14-3-3 proteins and their clinical significance
Authors:
R. Novobilský 1,2; H. Štefanská 3; P. Kušnierová 4,5
Authors‘ workplace:
Katedra klinických neurověd, Lékařská fakulta, Ostravská univerzita, Ostrava
1; Neurologická klinika, Fakultní nemocnice, Ostrava
2; Lékařská fakulta, Ostravská univerzita, Ostrava
3; Ústav laboratorní medicíny, Fakultní nemocnice Ostrava, Ostrava
4; Ústav laboratorní medicíny, Lékařská fakulta, Ostravská univerzita, Ostrava
5
Published in:
Klin. Biochem. Metab., 30, 2022, No. 4, p. 125-131
Overview
14-3-3 proteins are among the highly conserved acidic homologous proteins that are involved in several important processes in the human body, such as cell cycle control, apoptosis, neuronal development, cell growth, or signal transduction and phosphorylation. They consist of seven isoforms found in all eukaryotic cells. However, the highest expression of 14-3-3 proteins is shown in the brain. For this reason, the detection/determination of 14-3-3 proteins is important in patients with neurological diseases, predominantly in rapidly progressive dementia with neurological symptoms. The most commonly used method is Western blot with chromogenic or chemiluminescent detection. A possible variant is the ELISA determination of individual isoforms.
Keywords:
dementia – Creutzfeldt-Jakob disease – ELISA – Prions – Western blot – 14-3-3 proteins
Sources
1. Aitken, A. 14-3-3 proteins on the MAP. Trends Biochem. Sci., 1995, 20(3), s. 95-97. Dostupné z: doi:10.1016/ S0968-0004(00)88971-9.
2. Rusina, R., Nováková, J., Koukolík, F., Matěj, R. Vyšetřování proteinu 14-3-3 v mozkomíšním moku – klinicko patologická korelace. Česká a slovenská neurologie a neurochirurgie. Praha: Care Comm., 2008, 15(6).
3. Mhawech, P. 14-3-3 proteins—an update. Cell Res., 2005, 15(4), s. 228-236. Dostupné z: doi:10.1038/ sj.cr.7290291
4. Dougherty, M., Morrison, K., Morrison, D. K. Unlocking the code of 14-3-3. J Cell Sci., 2004, 117(10), s. 1875-1884. Dostupné z: doi:10.1242/jcs.01171
5. Foote, M., Zhou, Y. 14-3-3 proteins in neurological disorders. International J Biochem. Mol. Biol., 2012, 3(2), s. 152-164.
6. Benzinger, A., Popowicz, G. M., Joy, J. K., Majumdar, S., Holak, T. A., Hermeking, H. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization. Cell Res., 2005, 15(4), s. 219-227. Dostupné z: doi:10.1038/sj.cr.7290290
7. Aitken, A. 14-3-3 proteins: A historic overview. Sem. Canc. Biol., 2006, 16(3), s. 162-172. Dostupné z: doi:10.1016/j.semcancer.2006.03.005
8. Cornell, B., Toyo-Oka, T. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Front. Mol. Neurosci., 2017, 10. Dostupné z: doi:10.3389/fnmol.2017.00318
9. Ferl, R. J., Manak, M. S., Reyes, M. F. The 14-3-3s. Genom. Biol., 2002, 3(7). Dostupné z: doi:10.1186/gb- 2002-3-7-reviews3010
10. Pennington, K. L., Chan, T. Y., Torres, M. P., Andersen, J. L. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions. Oncogene, 2018, 37(42), s. 5587-5604. Dostupné z: doi:10.1038/s41388-018-0348-3
11. Tzivion, G., Shen, Y. H., Zhu, J. 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene, 2001, 20(44), s. 6331-6338. Dostupné z: doi:10.1038/ sj.onc.1204777
12. Dunphy, W. G., Kumagai, A. The cdc25 protein contains an intrinsic phosphatase activity. Cell, 1991, 67(1), s. 189-196. Dostupné z: doi:10.1016/0092- 8674(91)90582-J
13. Aghazadeh, Y., Papadopoulos, V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discover. T., 2016, 21(2), s. 278-287. Dostupné z: doi:10.1016/j.drudis.2015.09.012
14. Berg, D., Holzmann, C., Riess, O. 14-3-3 proteins in the nervous system. Nat. Rev. Neurosci., 2003, 4(9), s. 752-762. Dostupné z: doi:10.1038/nrn1197
15. Steinacker, P., Aitken, A., Otto, M. 14-3-3 proteins in neurodegeneration, Semin. Cell Dev. Biol., 2011, 22(7), s. 696-704. Dostupné z: doi:10.1016/j.semcdb. 2011.08.005
16. Wilker, E. W., Grant, R. A., Artim, S. C., Yaffe, M. B. A Structural Basis for 14-3-3σ Functional Specificity. J Biol. Chem., 2005, 280(19), s. 18891-18898. Dostupné z: doi:10.1074/jbc.M500982200
17. Foote, M., Qiao, H., Graham, K., Wy, Y., Zhou, Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol. Psych., 2015, 78(6), s. 386-395. Dostupné z: doi:10.1016/j.biopsych.2015.02.015
18. Qiao, H., Foote, M., Graham, K., Wy, Y., Zhou, Y. 14-3-3 Proteins Are Required for Hippocampal Long- Term Potentiation and Associative Learning and Memory. J Neurosci., 2014, 34(14), s. 4801-4808. Dostupné z: doi:10.1523/JNEUROSCI.4393-13.2014
19. Jin, J., Smith, F. D., Stark, C. Proteomic, Functional, and Domain-Based Analysis of In Vivo 14-3-3 Binding Proteins Involved in Cytoskeletal Regulation and Cellular Organization. Curr. Biol., 2004, 14(16), s. 1436-1450. Dostupné z: doi:10.1016/j.cub.2004.07.051
20. Cornell, B., Wachi, T., Zhukarev, V., Toyo-Oka, T. Regulation of neuronal morphogenesis by 14-3-3epsilon ( Ywhae ) via the microtubule binding protein, doublecortin. Hum. Mol. Gen., 2016, 25(20), s. 4405-4418. Dostupné z: doi:10.1093/hmg/ddw270
21. Rusina, R., Matěj, R. Neurodegenerativní onemocnění. 2., přepracované a doplněné vydání. Praha: Mladá fronta, 2019. Aeskulap. ISBN 978-80-204-5123-1.
22. Kaňovský, P., Bártková, A. Speciální neurologie. Olomouc: Univerzita Palackého v Olomouci, 2020. ISBN 978-80-244-5611-9.
23. Prusiner, S. B. Novel Proteinaceous Infectious Particles Cause Scrapie. Science, 1982, 216(4542), s. 136-144. Dostupné z: doi:10.1126/science.6801762
24. Geschwind, M. D. Prion Diseases. CONTINUUM: Lifelong Learn. Neurol., 2015, 21, s. 1612-1638. Dostupné z: doi:10.1212/CON.0000000000000251
25. Perrett, S., Ma, J., Wang, F. Prion disease and the ‘protein-only hypothesis’. Essays Biochem., 2014, 56, s. 181-191. Dostupné z: doi:10.1042/bse0560181
26. Koukolík, F., Jirák, R. Alzheimerova nemoc a další demence. Praha: Grada, 1998. ISBN 80-716-9615-3.
27. Prusiner, S. B. Nobel Lecture: Prions. Proc.Nat. Acad. Sci., 1998, 95(23), s. 13363-13383. Dostupné z: doi:10.1073/pnas.95.23.13363
28. Uttley, L., Carroll, C., Wong, R., Hilton, D. A., Stevenson, Tevenson, M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. The Lancet Infect. Dis., 2020, 20(1), s. 2-10. Dostupné z: doi:10.1016/S1473-3099(19)30615-2
29. WHO manual for surveillance of human transmissible spongiform encephalopathies including variant Creutzfeldt-Jakob disease. Geneva: World Health Organization, 2003. ISBN 9241545887.
30. Hermann, P. Appelby, P., Brandel, J.-P. et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. The Lancet Neurol., 2021, 20(3), s. 235-246. Dostupné z: doi:10.1016/S1474- 4422(20)30477-4
31. Zerr, I., Kallenberg, K., Summers, D. M. et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain, 2009, 132(10), s. 2659-2668. Dostupné z: doi:10.1093/brain/awp191
Labels
Clinical biochemistry Nuclear medicine Nutritive therapistArticle was published in
Clinical Biochemistry and Metabolism
2022 Issue 4
Most read in this issue
- Serum amyloid A and its clinical significance
- 14-3-3 proteins and their clinical significance
- Determination of chlorides in serum by methods with ion-selective electrodes (ISE). Standardization without harmonization.
- Budoucnost KBM od č.1/2023