#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Serum biochemical analytes, COVID-19 and harmonization


Authors: B. Friedecký;  J. Kratochvíla
Authors‘ workplace: Ústav klinické biochemie a diagnostiky FN Hradec Králové
Published in: Klin. Biochem. Metab., 30, 2022, No. 1, p. 12-16

Overview

During COVID-19 many serum analytes show significant concentration changes allow to make prediction on severity and development of illness. Namely results of ALT, LD, albumin, creatinine and eGFR, cardiac markers, procalcitonin, lipids. New approach to harmonization in clinical laboratories based on IVDR 746 and derived from ISO 17511:2020 and ISO 21151:2020 was assessed for these analytes. Aim of communication deals with real statement in harmonization and its problems in these analytes. WE found lot of harmonization problems in all introduced analytes.

Keywords:

harmonization – standardization – COVID-19 – IVDR 746 – blood serum analytes


Sources

1. Thompson, J. et al. IFCC interim guidelines on biochemical/hematological monitoring of COVID-19. Clin. Chem. Lab. Med., 2020, 58, s. 2009-2016.

2. Malik, P., Patel, V., Mehta, D. et al. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid. Based Med., 2021;26:107–108.

3. Bonnett, G., Weizman, O., Trimalle, A. et al. Characteristics and outcomes of patients hospitalized for COVID-19 in France: The Critical COVID-19 France (CCF) study. Arch. Cardiovasc. Dis., 2021,114, s. 352- 363.

4. ISO 17511:2020. In vitro diagnostic medical devices: Requirement for establishing metrological traceability of values assigned to calibrators,trueness control materials and human samples.

5. ISO 21151:2020. In vitro diagnosis medical devices. Requirements for international harmonization protocols for establishing metrological traceability of values assigned to calibration and human samples.

6. IVDR 746. A progresive roll out of the new in vitro diagnostic medical devices regulations. JCTLM, october 2021.

7. Friedecký, B., Kratochvíla, J. Nové formulace požadavků na kvalitu a dokumentaci IVD. Fons 4/2021

8. Weykamp, C., Secchiero, S., Plebani, M. et al. Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain. Clin. Chem. Lab. Med., 2017, 55, s. 203-211.

9. Ricós, C., Perich, C., Boned, B. et al: Standardization in laboratory medicine: two years experien ce from category 1 EQA programs in Spain. Biochem. Med. Zagreb, 2019, 29(1), 010701.

10. Koerbin, G., Tate, J. T., Ryan, J., Jones, G. R. D. Bias assessment of general chemistry analytes using commutable sample. Clin. Biochem. Rev., 2014, 35(4), s. 203-211.

11. Igbal, Z., Ho, J. H., Adam, S. et al. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK, Atherosclerosis, 2020, 313, 126-136.

12. Mertoglu, C., Huyut, M. T. H., Arslan, Y et al. How do routine laboratoty tests changeš in coronavirus disease 2019. Scand. J Clin. Lab. Invest., 2021, 8, s. 24-33.

13. Aloisio, E., Pasqualetti, S., Panteghini, M. Linking lactate dehydrogenase the severity of COVID-19 cannot ignore the employed methodology. Am. J Emerging. Med., 2021, 45, s. 652-653.

14. Aloisio, E., Serafini, L., Chibireva, M. et al. Hypoalbuminemia and elevate D-dimer in COVID-19 patients: a call for results harmonization. Clin. Chem. Lab. Med., 2020, 58, e255-e256.

15. Aloisio, E., Chibireva, M., Sefafini, L. et al. A comprehensive appraisal of laboratory biochemistry tests as major predictions of COVID-19 severity. Arch. Pathol. Lab. Med., 2020, 144, s. 1457-1464.

16. Bachmann, L. M., Yu, M., Boyd, J. C. et al. State of harmonization of 24 serum albumin measurement procedures and implication for medical devices. Clin. Chem., 2017, 63, s. 770-779.

17. Lippi, G., Salvagnano, G. L., Gelati, M. et al. Twocenter comparison of 10 fully-automated commercial procalcitonin (PCT) immunoassays. Clin. Chem. Lab. Med., 2019, 58(1), s. 77-84.

18. Hyunh, H. H., Boeuf, A., Pfannkuche, J. et al. Harmonization status of procalcitonin measurements: what do comparison and EQA schemes tell us? Clin. Chem. Lab. Med., 2021, 59, s. 1610-1622.

19. Kavsak, P. A., Hammerstein, O., Worstler, A. et al. Cardiac troponin testing in patients with COVID-19: A strategy for testing and reporting results. Clin. Chem., 2021, 67, s. 107-113.

20. Qiang, Z., Wang, B., GaRnett, B. C. et al. Coronavirus disease 2019: a comparison review and meta-analysis on cardiovascular biomarkers. Curr. Opin. Cardial., 2021, 36, s. 236-273.

21. Calvo-Fernandez, A., Izquierdo, A., Sabirana, I. et al. Markers of myocardial injury in the prediction of a short-term COVID-19 prognosis. Rev. Esp. Cardiol. (Eng Ed), 2021, 174, s. 576-583.

22. Michelli, L. D., Ole, O., Knott, J. D. et al. High-sensitivity cardiac troponin T for the detection of myocardial injury and risk stratification in COVID-19. Clin. Chem., 2021, 67, s. 1080-1089.

23. van der Hagen, A. E. A., Weykamp, C., Sandberg, S. Feasibility for aggregation of commutable external quality assessment results to evaluate metrologicaltraeability and agreement among results. Clin. Chem. Lab. Med., 2021, 59, s. 117-125.

24. Killien, A., Horowitz, G. L. New equations for estimating glomerular filtration rate. Clin. Chem., 2021, https://doi. org/10.1093/clinchem/hvab260/6433679.

25. Masana, L., Correig, L., Ibaratxe, D. et al. Low HDL and high triacylglycerides predict COVID-19 severity, Sci. Rep., 2021, 11(1), 7217-7226.

26. Roccaforte, V., Daves, M., Lippi, M. G. et al. Altered lipid prtofile in patients witrh COVID-19 infection. J Lab. Precis. Med., 2021, 6, 2.

27. Rossouw, H. M., Nagel, S. E., Pilley, T. S. Comparability of 11 different equations for estimating LDL cholesterol on different analyzers. Clin. Chem. Lab. Med., 2021, 59, s. 1930-1943.

28. Miller, W. G., Myers, G. L., Sakurabayashi, I. et al. Seven direct methods for measuring FDL and LDL compared with ultracentrifugation reference method procedures. Clin. Chem., 2010, 56, s. 977-986.

29. Korzum, W. J., Nilsson, L., Bachmann, L. M. et al. Differences in bias approach for commutability assessment: application to frozen pools of human serum measured by 8 direct methods for HDL and LDL cholesterol. Clin. Chem., 2015, 61, s. 1107-1113.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#