#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolism of cholesterol in obese patients with diabetes mellitus type 1 - impact of weight reduction


Authors: J. Lesná 1,2,3,4;  A. Tichá 2;  R. Hyšpler 2,3;  I. Svobodová 2;  F. Musil 1;  V. Bláha 1,2;  L. Sobotka 1,4;  Z. Zadák 1,2;  A. Šmahelová 1,4
Authors‘ workplace: III. Interní klinika gerontometabolická, Fakultní nemocnice Hradec Králové 1;  Centrum pro vývoj a výzkum, Fakultní nemocnice Hradec Králové 2;  Ústav klinické biochemie a diagnostiky, Fakultní nemocnice Hradec Králové 3;  Lékařská fakulta v Hradci Králové, Univerzita Karlova v Praze 4
Published in: Klin. Biochem. Metab., 23 (44), 2015, No. 2, p. 60-66

Overview

Objective:
Diabetes mellitus type 1 is characterized with an absolute insulin deficiency. Deterioration of cholesterol metabolism is well known in this disease – cholesterol absorption is typically elevated. Obesity, on the other hand, is typically accompanied with lower insulin sensitivity, that is known to increase cholesterol synthesis and decrease cholesterol absorption. The aim of this study was to characterize cholesterol metabolism in obese type 1 diabetics and to characterize its dynamics during weight reduction programme.

Design:
interventional, prospective.

Material and methods:
Total cholesterol, HDL-cholesterol, LDL-cholesterol, and triacylglycerols were estimated in obese type diabetic patients (n = 14, BMI > 30 kg/m2) enzymatically. Glycated hemoglobin was estimated by HPLC (high-performance liquid chromatography). Measurements were repeated in Phase I (before intervention), Phase II (after one week of fasting + three weeks on a diet with 150g saccharides per day) and in Phase III (after one year on a diet with 225g saccharides per day). Gas chromatography with the flame ionisation detector was used to estimate squalene and non-cholesterol sterols (lathosterol, campesterol and β-sitosterol). One-time, the control group of non-obese patients with type 1 diabetes (n=14, BMI<24) was investigated. Markers of cholesterol metabolism were compared with the control group of lean non-diabetics. Data are presented as median (percentile (25;75)).

Results:
In Phase I, significant (P≤0.05) elevation of campesterol in obese diabetics was found in comparison to lean subjects. In non-diabetic subjects, significantly (P≤0.001) lower levels of sitosterol were found. During the weight reduction programme (Phase III) significant decrease in lathosterol (P≤0.001) and campesterol (P≤0.05) was found.

Conclusion:
Compared study subgroups significantly differed in markers of cholesterol absorption. The significant decrease in markers of cholesterol absorption and endogenous cholesterol synthesis was found after the weight reduction programme.

Keywords:
sterols, obesity, diabetes mellitus type 1, obesity.


Sources

1. Kuksis, A. Plasma non-cholesterol sterols. Journal of Chromatography, 2001; 935, p. 203-236.

2. Hashim, Y. Z., Eng, M., Gill, C. I., et al. Components of olive oil and chemoprevention of colorectal cancer. Nutr. Rev., 2005, 63(11), p. 374-386.

3. Hyšpler, R., Crhova, S., Gasparič, J., et al. Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 2000, 28, p. 183-90.

4. Heinemann, T., Axtmann, G., von Bergmann, K. Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur. J. Clin. Invest., 1993, 40, p. 302-308.

5. Silbernagel, G., Fauler, G., Renner, W., et al. The relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease. J. Lipid Res., 2009, 50(2), p. 334 – 341.

6. Choudhary, S. P., Tran, L. S. „Phytosterols: Perspectives in human nutrition and clinical therapy“. Current medicinal chemistry, 2011, 18(29), p. 4557–67.

7. Koivusalo, A. I., Pakarinen, M. P., Sittiwet, C., et al. Cholesterol, non-cholesterol sterols and bile acids in paediatric gallstones. Dig. Liver Dis., 2010, 42(1), p. 61 – 66.

8. Jones, P. J., Raeini-Sarjaz, M., Jenkins, D. J., et al. Effects of a diet high in plant sterols, vegetable proteins, and viscous fibers (dietary portfolio) on circulating sterol levels and red cell fragility in hypercholesterolemic subjects. Lipids, 2005, 40(2), p.169 – 174.

9. Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 2011, 378 (9785), p. 31–40.

10. Online: www.uzis.cz.

11. Summers, L. K., Samra, J. S., Frayn, K. N. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk? Atherosclerosis. 1999, 147(1), p. 11-15.

12. Bjorkhem, I., Miettinen, T. A., Reihner, E. et al. Correlation between serum levels of some cholesterol precursors and activity of HMG- CoA reductase in human liver. J. Lipid Res., 1987, 28, p.1137-1143.

13. Samuel, V. T., Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell., 2012, 148, p. 852-871.

14. Miettinen, T. A., Gylling, H., Tuominen, J., Simonen, P., Koivisto, V. Low synthesis and high absorption of cholesterol characterize type 1 diabetes. Diabetes care., 2004, 27, p.53-58.

15. Simonen, P., Gylling, H., Howard, A., Mietinen, T. A. Introducing a new component of the metabolic syndrome: low cholesterol absorption. Am. J. Clin. Nutr., 2000, 72, p. 82-88.

16. Šmahelová, A., Zadák, Z., Hyšpler, R., Haas, T. An importance of vegetable sterols in diabetics (in Czech). Vnitřní lékařství, 2004, 50, p.147-152.

17. Jarvisalo, M., Raitakari, O., Gylling, H., Miettinen, T. A. Cholesterol absorption and synthesis in children with type 1 diabetes. Diabetes Care., 2006, 29(10), p. 2300-4.

18. Gylling, H., Laaksonen, D. E., Atalay, M., Hallikinen, M., Niskanen, L., Miettinen, T. A. Markers of absorption and synthesis of cholesterol in men with type 1 diabetes. Diabetes Metab. Res. Rev., 2007, 23(5), p. 372-7.

19. Paramsothy, P., Knopp, R. H., Kahn, S. E., Retzlaff, B. M., Fish, B., Ma, L., Ostlund, R. E. Jr. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity. Am J. Clin. Nutr., 2011, 94(5), p. 1182-8.

20. Hallikainen, M., Tuomilehto, H., Martikainen, T., Vannienen, E., Seppa, J., Kokkarinen, J., Randell, J., Gylling, H. Cholesterol metabolism and weight reduction in subjects with mild obstructive sleep apnoea: a randomised, controlled study. Cholesterol 2013, 2013, 769457.

21. Brindisi, M. C., Guiu, B., Duvillard, L., Athias, A., Rollot, F., Bouillet, B., Beacco, M., Hillon, P., Cercueil, J. P., Verges, B., Petit, J. M. Liver fat content is associated with an increase in cholesterol synthesis independent of statin therapy use in patients with type 2 diabetes. Atherosclerosis, 2012, 224(2), p. 465-8.

22. Bijland, S., Mancini, S. J., Salt, I. P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin. Sci., 2013, 124 (8), p. 491-507.

Labels
Clinical biochemistry Nuclear medicine Nutritive therapist

Article was published in

Clinical Biochemistry and Metabolism

Issue 2

2015 Issue 2

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#