Effect of midazolam and dexmedetomidine on heart ventricles function using MRI – a pilot randomized study
Authors:
N. Omran 1; V. Skálová 2; D. Fĺak 1; J. Manďák 3; R. Škulec 4; V.- Černý 4 8
Authors‘ workplace:
Kardiologická Klinika, Masarykova nemocnice a Univerzita J. E. Purkyně v Ústí nad Labem
1; Radiologická Klinika, Masarykova nemocnice a Univerzita J. E. Purkyně v Ústí nad Labem
2; Kardiochirurgická klinika, Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové
3; Klinika anesteziologie, perioperační a intenzivní medicíny, Masarykova nemocnice a Univerzita J. E. Purkyně, v Ústí nad Labem
4; Institut postgraduálního vzdělávání ve zdravotnictví
5; Centrum pro výzkum a vývoj, Fakultní nemocnice Hradec Králové
6; Dept. of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Canada
7; Klinika anesteziologie, resuscitace a intenzivní medicíny, Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové
8
Published in:
Anest. intenziv. Med., 31, 2020, č. 4, s. 146-151
Category:
Original Article
Overview
Objective: Comparison of changes in ventricular function during sedation with midazolam and dexmedetomidine by mag netic resonance imaging (MRI), assess the feasibility of the implemented study protocol and determine the sample size of our randomized study.
Design: A pilot randomized study.
Setting: District hospital.
Materials and methods: The study included participants who met the inclusion criteria. Enrollment was by the envelope method: 8 participants in each group. After signing the informed consent, cardiac MRI was performed before and after se dation. During the examination, the blood flow velocity through the mitral valve during the early (E diast) and late (L diast) phase of diastole, the flow velocity through the aortic (Ao flow) and pulmonary (Pul flow) valves were recorded. A monitor recorded values of mean blood pressure (MAP), pulse (P), blood oxygen saturation (SpO2) in 5-minute intervals.
Results: Dexmedetomidine decreased MAP (82.5 mmHg ± 6 vs. 75.5 mmHg ± 7.2, p-value 0.027). P a SpO2 in both groups were without significant changes. Midazolam sedation led to worsening in E diast (234.5 mL.s–1 ± 93.5 vs. 207.6 mL.s–1 ± 87.6, p-value 0.012) whereas dexmedetomidine didn’t have a significant impact on E diast. L diast was not influenced by the seda tion technique in both groups. Dexmedetomdine sedatoin led a decrease in Pul flow (87 cm.s–1 ± 17.1 vs. 73.5 cm.s–1 ± 10.5, p-value 0.016) indicating a decrease in right ventricle output.
Conclusion: The implemented study protocol is feasible. Midazolam sedation worsens early filling of the left ventricle compared to dexmedetomide. Dexmedetomidine leads to a greater decrease in mean blood pressure and worsens, when compared to midazolam, right ventricle output.
Keywords:
cardiac magnetic resonance – cardiac function – midazolam – dexmedetomidine
Sources
1. Gare M, Parail A, Milosavljevic D, Kersten JR, Warltier DC, Pagel PS. Conscious sedation with midazolam or propofol does not alter left ventricular diastolic performance in patients with preexisting diastolic dysfunction: a transmitral and tissue Doppler transthoracic echocardiography study. Anesth Analg. 2001; 93(4): 865–871. doi: 10.1097/00000539- 200110000-00012.
2. Grossman W, Haering JM, Pagel PS, Warltier DC. Left Ventricular Diastolic Function in the Normal and Diseased Heart. Anesthesiology. 1993; 79(4): 836–854. doi: 10.1097/00000542- 199310000-00027.
3. Couture P, Denault AY, Shi Y, Deschamps A, Cossette M, Pellerin M, et al. Effects of anesthetic induction in patients with diastolic dysfunction. Can J Anaesth. 2009; 56(5): 357– 365. doi: 10.1007/s12630-009-9068-z.
4. Lee SH, Na S, Kim N, Ban MG, Shin SE, Oh YJ. The Effects of Dexmedetomidine on Myocardial Function Assessed by Tissue Doppler Echocardiography During General Anesthesia in Patients With Diastolic Dysfunction. Medicine (Baltimore). 2016; 95(6): e2805. doi: 10.1097/MD.0000000000002805.
5. Snapir A, Posti J, Kentala E, Koskenvuo J, Sundell J, Tuunanen H, et al. Effects of low and high plasma concentrations of dexmedetomidine on myocardial perfusion and cardiac function in healthy male subjects. Anesthesiology. 2006; 105(5): 902–910; quiz 1069–1070. doi: 10.1097/00000542-200611000-00010.
6. Lee SH, Choi YS, Hong GR, Oh YJ. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015; 70(9): 1052–1059. doi: 10.1111/anae.13084.
7. Yu T, Li Q, Liu L, Guo F, Longhini F, Yang Y, et al. Different effects of propofol and dexmedetomidine on preload dependency in endotoxemic shock with norepinephrine infusion: a randomized case‑ control study. Crit Care. 2014; 18(1): P417. doi: 10.1186/cc13607.
8. Arcangeli A, D’Alò C, Gaspari R. Dexmedetomidine use in general anaesthesia. Curr Drug Targets. 2009; 10(8): 687–695. doi: 10.2174/138945009788982423.
9. Win NN, Fukayama H, Kohase H, Umino M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg. 2005; 101(1): 97–102. doi:
10.1213/01.ANE.0000156204.89879.5C. 10. Galletly DC, Williams TB, Robinson BJ. Periodic cardiovascular and ventilatory activity during midazolam sedation. Br J Anaesth. 1996; 76(4): 503–507. doi: 10.1093/bja/76. 4. 503.
11. Macnab AJ, Levine M, Glick N, Macready J, Susak L, et al. Midazolam following open heart surgery in children: haemodynamic effects of a loading dose. Paediatr Anaesth. 1996; 6(5): 387–397. doi: 10.1046/j.1460-9592.1996.d01-6.x.
12. Szumita PM, Baroletti SA, Anger KE, Wechsler ME. Sedation and analgesia in the intensive care unit: evaluating the role of dexmedetomidine. Am J Health Syst Pharm. 2007; 64(1): 37–44. doi: 10.2146/ajhp050508.
13. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93(2): 382–394. doi: 10.1097/00000542-200008000-00016.
14. Webb J, Fovargue L, Tøndel K, Porter B, Sieniewicz B, Gould J, et al. The Emerging Role of Cardiac Magnetic Resonance Imaging in the Evaluation of Patients with HFpEF. Curr Heart Fail Rep. 2018; 15(1): 1–9. doi: 10.1007/s11897-018-0372-1.
15. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008; 10(1): 36. doi: 10.1186/1532-429X-10-36.
Labels
Anaesthesiology, Resuscitation and Inten Intensive Care MedicineArticle was published in
Anaesthesiology and Intensive Care Medicine
2020 Issue 4
Most read in this issue
- Tranexamová kyselina
- Hypoxia and hypercapnia – how do the chemoreceptors work?
- Audit of antibiotic prophylaxis in surgery
- Insulin resistance, hyperglycemia and protein catabolism in the critically ill: looking for keys of the locked door