Alarmins and their role in perioperative medicine
Authors:
J. Máca
Authors‘ workplace:
Katedra intenzivní medicíny a forenzních oborů, Lékařská fakulta, Ostravská univerzita v Ostravě
; Klinika anesteziologie, resuscitace a intenzivní medicíny, Fakultní nemocnice Ostrava-Poruba
Published in:
Anest. intenziv. Med., 27, 2016, č. 2, s. 98-106
Category:
Intensive Care Medicine - Review Article
Overview
Alarmins are mostly protein-based substances which, under normal conditions, are localized intracellularly, fulfilling their physiological functions. Currently, the most studied group of alarmins consists of the high-mobility group box 1, heat-shock proteins, proteins S100A, mitochondrial DNA and formylated methionine-leucyl-phenylalanine. In pathological condition, alarmins are released or actively secreted into the extracellular space where they presumably play an important role in activation of innate immunity. A wide spectrum of alarmins has been identified. Alarmins were studied in several chronic diseases during the last decades but there is also an increasing number of research papers concerning their relationship with acute inflammatory conditions, e.g. the systemic inflammatory response syndrome caused by infectious or non-infectious insults. Extensive surgery has some attributes which might lead to the release of alarmins from the injured/damaged tissues. In such cases, the measuring of blood levels of alarmins could bring better understanding of the pathophysiology of surgical trauma, refine its monitoring and improve our ability to predict the clinical outcome of the patients. This issue warrants further thorough studying.
KEYWORDS:
alarmins – surgery – immune response – sterile injury
Sources
1. Matzinger, P. The danger model: a renewed sense of self. Science, 2002, 296, p. 301–305.
2. Matzinger, P., Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol., 2011, 11, p. 221–230.
3. Seong, S. Y., Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol., 2004, 4, p. 469–478.
4. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, 81, p. 1–5.
5. Chan, J. K., Roth, J., Oppenheim, J. J., Tracey, K. J., Vogl, T., Feldmann, M., Horwood, N., Nanchahal, J. Alarmins: awaiting a clinical response. J. Clin. Invest., 2012, 122, p. 2711–2719.
6. Shields, A. M., Panayi, G. S., Corrigall, V. M. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis? Clin. Exp. Immunol., 2011, 165, 3, p. 292–300.
7. Fadeel, B. Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med. Wkly, 2012, 142:w13609.
8. Krysko, D. V., Agostinis, P., Krysko, O., Garg, A. D., Bachert, C., Lambrecht, B. N., Vandenabeele, P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol., 2001, 32, p. 157–164.
9. Rocco, P. R., Dos Santos, C., Pelosi, P. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiol., 2009, 75, 12, p. 730–740.
10. Tsan, M. F. Heat shock protein and high mobility group box 1 protein lack cytokine function. J. Leukoc. Biol., 2011, 89, p. 847–853.
11. Lotze, M. T., Deisseroth, A., Rubartelli, A. FOCiS on damage associated molecular pattern molecules. Clin Immunol 2007; 124:1-4
12. Lotze, M. T., Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol., 2005, 5, p. 331–342.
13. Yanai, Ban T., Taniguchi, T. High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol., 2012, 33, p. 633–640.
14. Cohen, M. J., Brohi, K., Calfee, C. S., Rahn, P., Chesebro, B. B., Christiaans, S. C., Carles, M., Howard, M., Pittet, J. F. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit. Care, 2009, 13, 6, R174.
15. Hartl, F. U., Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded prtein. Science, 2002, 295, p. 1852–1858.
16. Caderwood, S. K., Mambula, S. S., Gray, P. J. Jr. Exracellular heat shock proteins in cell signaling and immunity. Ann. N. Y. Acad. Sci., 2007, 1113, s. 28–39.
17. McIlroy, D. J., Bigland, M., White, A. E., Hardy, B. M., Lott, N., Smith, D. W., Balogh, Z. J. Cell necrosis-independent sustained mitochondrial and nuclear DNA release following trauma surgery. J. Trauma Acute Care Surg., 2015, 78, p. 282–288.
18. Pugin, J. How tissue injury alarms the immune system and causes inflammatory response syndrome. Ann. Intensive Care, 2012, 2, 27.
19. Heizmann, C. W., Fritz, G., Schafer, B. W. S100 proteins: structure, functions and pathology. Front. Biosci., 2002, 7, p. 1356–1368.
20. Foell, D., Wittkowski, H., Vogl, T., Roth, J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol., 2007, 81, p. 28–37.
21. Frosch, M., Metze, D., Foell, D., Vogl, T., Sorg, C., Sunderkötter, C., Roth, J. Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis. Exp. Dermatol., 2005, 14, 4, p. 259–265.
22. Vogl, T., Pröpper, C., Hartmann, M., Strey, A., Strupat, K., van den Bos, C., Sorg, C., Roth, J. S100A12 is expressed exclusively by granulocytes and acts independently from MRP8 and MRP14. J. Biol. Chem., 1999, 274, p. 25291–25296.
23. Pietzch, J., Hoppmann, S. Human S100A12: a novel key player in inflammation? Amino Acids, 2009, 36, p. 381–389.
24. Foell, D., Roth, J. Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum., 2004, 50, p. 3762–3771.
25. Meijer, B., Gearry, R. B., Day, A. S. The role of S100A12 as a systemic marker of inflammation. Int. J. Inflam., 2012, 907078.
26. Shrikrishna, G., Panneerselvam, K., Westphal, V., Abraham, V., Varki, A., Freeze, H. H. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J. Immunol., 2001, 166, p. 4678–4688.
27. NeSmith, E. G., Weinrich, S. P., Andrews, J. O., Medeiros, R. S., Hawkins, M. L., Weinrich, M. Systemic inflammatory response syndrome score and race as predictors of length of stay in the intensive care unit. Am. J. Crit. Care, 2009, 18, p. 339–346.
28. Baue, A. E., Durham, R., Faist, E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock, 1998, 10, p. 79–89.
29. Jakobson, T., Karjagin, J., Vipp, L., Padar, M., Parik, A. H., Starkopf, L., Kern, H., Tammik, O., Starkopf, J. Postoperative complications and mortality after major gastrointestinal surgery. Medicina (Kaunas), 2014, 50, p. 111–117.
30. Khuri, S. F., Henderson, W. G., DePalma, R. G., Mosca, C., Healey, N. A., Kumbhani, D. J. Participants in the VA National Surgical Quality Improvement Program. Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann. Surg., 2005, 242, p. 326–341.
31. Barie, P. S., Hydo, L. J. Epidemiology of multiple organ dysfunction syndrome in critical surgical illness. Surg. Infect. (Larchmt), 2000, 1, p. 173–185.
32. Pearse, R. M., Harrison, D. A., James, P., Watson, D., Hinds, C., Rhodes, A., Grounds, R. M., Bennett, E. D. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit. Care, 2006, 10:R81.
33. Jhanji, S., Thomas, B., Ely, A., Watson, D., Hinds, C. J., Pearse, R. M. Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia, 2008, 63, p. 695–700.
34. Dobson, G. P. Addressing the Global Burden of Trauma in Major Surgery. Front. Surg., 2015, 3, 2:43.
35. van Golen, R. F., Reiniers, M. J., Olthof, P. B., van Gulik, T. M., Heger, M. Sterile inflammation in hepatic ischemia/reperfusion injury: present concepts and potential therapeutics. J. Gastroenterol. Hepatol., 2013, 28, p. 394–400.
36. van Golen, R. F., van Gulik, T. M., Heger, M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev., 2012, 23, p. 69–84.
37. Marik, P. E., Flemmer, M. The immune response to surgery and trauma: implications for treatment. J. Trauma Acute Care Surg., 2012, 73, p. 801–808.
38. Gentle, L. F., Cuenca, A. G., Efron, P. A., Ang, D., Bihorac, A., McKinley, B. A., Moldawer, L. L., Moore, F. A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg., 2012, 72, p. 1491–501.
39. Reinhardt, R., Pohlmann, S., Kleinertz, H., Hepner-Schefczyk, M., Paul, A., Flohé, S. B. Invasive Surgery Impairs the Regulatory Function of Human CD56 bright Natural Killer Cells in Response to Staphylococcus aureus. Suppression of Interferon-γ Synthesis. PLoS One, 2015, 10:e0130155.
40. Terrando, N., Brzezinski, M., Degos, V., Eriksson, L. I., Kramer, J. H., Leung, J. M., Miller, B. L., Seeley, W. W., Vacas, S., Weiner, M. W., Yaffe, K., Young, W. L., Xie, Z., Maze, M. Perioperative cognitive decline in the aging population. Mayo Clin Proc., 2011, 86, p. 885–893.
41. Cui, P., Fang, X. Pathogenesis of infection in surgical patients. Curr. Opin. Crit. Care, 2015, 21, p. 343–350
42. Islam, N., Whitehouse, M., Mehendale, S., Hall, M., Tierney, J., O’Connell, E., Blom, A., Bannister, G., Hinde, J., Ceredig, R., Bradley, B. A. Post-traumatic immunosuppression is reversed by anti-coagulated salvaged blood transfusion: deductions from studying immune status after knee arthroplasty. Clin. Exp. Immunol., 2014, 177, p. 509–520.
43. Kimura, F., Shimizu, H., Yoshidome H, Ohtsuka M, Miyazaki M. Immunosuppression following surgical and traumatic injury. Surg Today, 2010, 40, p. 793–808.
44. Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Schein, R. M., Sibbald, W. J. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med., 1992, 20, p. 864–874.
45. Kaczmarek, A., Vendenabeele, P., Krysko, D. V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity, 2013, 38, p. 209–223.
Labels
Anaesthesiology, Resuscitation and Inten Intensive Care MedicineArticle was published in
Anaesthesiology and Intensive Care Medicine
2016 Issue 2
Most read in this issue
- Malignant hyperthermia
- Current opinion on caudal epidural blockade and its complications in children
- Intravenous fluid therapy in intensive care
- Practice Guidelines for the Prevention, Detection, and Management of Respiratory Depression Associated with Neuraxial Opioid Administration: An Updated Report by the American Society of Anesthesiologists Task Force on Neuraxial Opioids and the American Society of Regional Anesthesia and Pain Medicine