#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Volume responsivness and its predictability in cardiac arrest survivors treated by mild hypothermia (MH)


Authors: Škulec Roman 1;  Linhart Aleš 2
Authors‘ workplace: Záchranná služba Středočeského kraje, stanoviště Beroun 1;  II. interní klinika kardiologie a angiologie, Všeobecná fakultní nemocnice, Praha 2
Published in: Anest. intenziv. Med., 19, 2008, č. 4, s. 190-196
Category: Intensive Care Medicine - Original Paper

Overview

Objective:
To assess whether cardiac arrest survivors treated by MH with low cardiac index (CI) respond to volumexpansion. To assess whether respiratory variability of maximal aortic valve blood flow (ΔVmaxao) and velocity time integral of aortic valve blood flow (ΔVTIao) predict fluid responsiveness (increase of CI of >15%).

Design:
Prospective observational study.

Setting:
Emergency Medical Service, Cardiovascular Medicine Department, University Hospital.

Material and Method:
We investigated 10 consecutive cardiac arrest survivors treated by MH, with CI of < 2.5 l/min/m2. CI, ΔVmaxao and ΔVTIao were measured by transthoracic echocardiography after stabilization of body temperature in the range of 32–34 °C. This was followed by rapid administration of normal saline (8 ml/kg) and the second measurement.

Results:
Volumexpansion was followed by CI increase in 8 patients (from 1.86 ± 0.36 to 2.69 ± 0.53 l/min/m2, p = 0,003, responders) while in 2 subjects was not (non-responders). The values of ΔVmaxao (25.6 ± 4.8 vs. 4.2 ± 3.4 %, p < 0.001) and ΔVTIao (35.6 ± 4.3 vs. 4.1 ± 0.8%, p < 0,001) before volumexpansion were higher in responders than in non-responders. In responders, it decreased after volumexpansion (ΔVmaxao: to 6.9 ± 3.6%, ΔVTIao: to 7.0 ± 3.5%, p < 0,001) while in non-responders not. The baseline values of ΔVmaxao (r = 0.588, p = 0.003) and ΔVTIao (r = 0.552, p = 0.003) correlated with further increase of CI.

Conclusion:
Majority of MH treated cardiac arrest survivors with low CI in our set responded to volumexpansion. High values of ΔVmaxao and ΔΔVTIao predicted fluid responsiveness, low values fluid unresponsiveness.

Key words:
cardiac arrests, mild hypothermia, fluid responsiveness


Sources

1. Laurent, I., Monchi, M., Chiche, J. D. et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J. Am. Coll. Cardiol., 2002, 40, p. 2110–2116.

2. Adrie, Ch., Adib-Conquy, M., Laurent, I. et al. Successful Cardiopulmonary Resuscitation After Cardiac Arrest as a “Sepsis-Like” Syndrome. Circulation, 2002, 106, p. 562–568.

3. Jonesa, A. E., Shapirob, N. I., Kilgannonc, J. H. et al. on behalf of the Emergency Medicine Shock Research Network (EMSHOCKNET) investigators. Goal-directed hemodynamic optimization in the post-cardiac arrest syndrome: A systematic review. Resuscitation, 2008, 77, p. 26–29.

4. Polderman, K. H. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality – Part 2: Practical aspects and side effects. Intensive Care Med., 2004, 30, p. 757–769.

5. Tavernier, B., Makhotine, O., Lebuffe, G. et al. Systolic Pressure Variation as a Guide to Fluid Therapy in Patients with Sepsis-induced Hypotension. Anestesiology, 1998, 89, p. 1313–1321.

6. Michard, F., Teboul, J. L. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit. Care, 2000, 4, p. 282–289.

7. Pinsky, M. R. Assessment of indices of preload and volume responsiveness. Curr. Opin. Crit. Care, 2005, 11, p. 235–239.

8. Gunn, S. R., Pinsky, M. R. Implications of arterial pressure variation in patients in the intensive care unit. Curr. Opin. Crit. Care, 2001, 7, p. 212–217.

9. Skulec, R., Belohlavek, J., Linhart, A. et al. Respiratory variability of aortic blood velocity: predictor of preload responsiveness in healthy spontaneously breathing volunteers. Crit. Care, 2005, 9, Suppl. 1, p. P54.

10. Bell, D. D., Brindley, P. G., Forrest, D. et al. Management following resuscitation from cardiac arrest: recommendations from the 2003 Rocky Mountain Critical Care Conference. Can. J. Anesth., 2005, 52, p. 309–322.

11. American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 7.5: postresuscitation Support. Circulation, 2005, 112, Suppl. I, p. IV–84–88.

12. Škulec, R., Bělohlávek, J., Dytrych, V. et al. Protokol pro použití terapeutické mírné hypotermie u nemocných po srdeční zástavě. Cor. Vasa, 2007, 49, s. 61–65.

13. Nieminen, M. S., Bohm, M., Cowie, M. R. et al. ESC Committee for Practice Guideline (CPG). Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur. Heart J., 2005, 26, p. 384–416.

14. Slama, M., Masson, H., Teboul, J. L. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am. J. Physiol. Heart Circ. Physiol., 2002, 283, p. H1729–H1733.

15. Feissel, M., Michard, F., Mangin, I. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest, 2001, 119, p. 867–873.

16. Linhart, A., Paleček, T., Aschermann, M. Echokardiografie pro praxi, 1. vyd. The Hague Audioscan : Praha, 2002, 238 s.

17. Wright, W. L., Geocadin, R. G. Postresuscitative intensive care: neuroprotective strategies after cardiac arrest. Semin. Neurol., 2006, 26, p. 396–402.

18. Checchia, P. A., Sehra, R., Moynihan, J. et al. Myocardial injury in children following resuscitation after cardiac arrest. Resuscitation, 2003, 57, p. 131–137.

19. Tang, W., Weil, M. H., Sun, S. et al. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation, 1995, 92, p. 3089–3093.

20. Adrie, C., Laurent, I., Monchi, M. et al. Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr. Opin. Crit. Care, 2004, 10, p. 208–212.

21. Skulec, R., Kovarnik, T., Dostalova, G. et al. Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol. Scand., 2008, 52, p. 188–194.

22. Feissel, M., Michard, F., Faller, J. P. et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med., 2004, 30, p. 1834–1837.

23. Sheldon, M. Clinical Usefulness of Respiratory Variations in Arterial Pressure. Am. J. Respir. Crit. Care Med., 2004, 169, p. 151–155.

24. Du, F., Chen, X. L., Drzewiecki, G. Hypervolaemia improves global and local function and efficiency in postischaemic myocardium. Clin. Exp. Pharmacol. Physiol., 2001, 28, p. 630–636.

25. Sidi, A., Muehlschlegel, J. D., Kirby, D. S. et al. Treating ischemic left ventricular dysfunction with hypertonic saline administered after coronary occlusion in pigs. J. Cardiothorac. Vasc. Anesth., 2007, 21, p. 400–405.

26. Kumar, A., Anel, R., Bunnell, E. et al. Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Crit. Care, 2004, 8, p. R128–R136.

27. Calvin, J. E., Driedger, A. A., Sibbald, W. J. The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery, 1981, 90, p. 61–76.

28. van Daele, M. E., Trouwborst, A., van Woerkens, L. C. et al. Transesophageal echocardiographic monitoring of preoperative acute hypervolemic hemodilution. Anesthesiology, 1994, 81, p. 602–609.

Labels
Anaesthesiology, Resuscitation and Inten Intensive Care Medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#