A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits
Autoři:
Miguel Carneiro aff001; Jennifer Vieillard aff003; Pedro Andrade aff001; Samuel Boucher aff004; Sandra Afonso aff001; José A. Blanco-Aguiar aff001; Nuno Santos aff001; João Branco aff002; Pedro J. Esteves aff001; Nuno Ferrand aff001; Klas Kullander aff003; Leif Andersson aff006
Působiště autorů:
CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
aff001; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
aff002; Department of Neuroscience, Uppsala University, Uppsala, Sweden
aff003; Labovet Conseil (Réseau Cristal), Les Herbiers Cedex, France
aff004; Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland, South Africa
aff005; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
aff006; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
aff007; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
aff008
Vyšlo v časopise:
A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits. PLoS Genet 17(3): e1009429. doi:10.1371/journal.pgen.1009429
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009429
Souhrn
Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d’Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.
Klíčová slova:
Biological locomotion – Gene pool – Genomics – Heterozygosity – Interneurons – Neurons – Rabbits – Spinal cord
Zdroje
1. McCrea DA. Spinal circuitry of sensorimotor control of locomotion. J Physiol. 2001;533: 41–50. doi: 10.1111/j.1469-7793.2001.0041b.x 11351011
2. Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006;86: 89–154. doi: 10.1152/physrev.00028.2005 16371596
3. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science. 1985;228: 143–49. doi: 10.1126/science.3975635 3975635
4. Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006;52: 751–66. doi: 10.1016/j.neuron.2006.11.008 17145498
5. Kiehn O. Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci. 2006;29: 279–306. doi: 10.1146/annurev.neuro.29.051605.112910 16776587
6. Kullander K. Genetics moving to neuronal networks. Trends Neurosci. 2005;28: 239–47. doi: 10.1016/j.tins.2005.03.001 15866198
7. Hildebrand M. The quadrupedal gaits of vertebrates. Bioscience. 1989;11: 766–75. doi: 10.2307/1311182
8. Gordon MS, Blickhan R, Dabiri JO, Videler JJ. Animal locomotion: physical principles and adaptations. Boca Raton: CRC Press; 2017.
9. Andersson LS, Larhammar M, Memic F, Wootz H, Schwochow D, Rubin CJ, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488: 642–46. doi: 10.1038/nature11399 22932389
10. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M. Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron. 2004;42: 375–86. doi: 10.1016/s0896-6273(04)00249-1 15134635
11. Dottori M, Hartley L, Galea M, Paxinos G, Polizzotto M, Kilpatrick T, et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A. 1998;95: 13248–53. doi: 10.1073/pnas.95.22.13248 9789074
12. Koch SC, Del Barrio MG, Dalet A, Gatto G, Günther T, Zhang J, et al. RORβ spinal interneurons gate sensory transmission during locomotion to secure a fluid walking gait. Neuron. 2017;96: 1419–31. doi: 10.1016/j.neuron.2017.11.011 29224725
13. Ten Cate J. Locomotory movements of the hind limbs in rabbits after isolation of the lumbosacral cord. J Exp Biol. 1964;41: 359–62. 14187301
14. Letard E. Une mutation nouvelle chez le Lapin. Bull Acad Vet Fr. 1935;111: 608–10.
15. Letard E. Troubles de la locomotion et troubles de la vision chez le Lapin, liaison héréditaire. Bull Acad Vet Fr. 1943;16: 184–92.
16. Boucher S, Renard JP, Joly T. The “Alfort jumper” rabbit: historic, description and characterization. Proc 6th World Rabbit Congr. 1996;2: 255–8.
17. Audigier I. Etude comparative de la locomotion du Lapin normal et du Lapin sauteur d’Alfort. Thèse d’exercice. UPEC, Faculté de médecine. 1999. Available from: https://bibliotheques.mnhn.fr/medias/doc/exploitation/HORIZON/507101/etude-comparative-de-la-locomotion-du-lapin-normal-et-du-lapin-sauteur
18. Boucher S. Le lapin Sauteur d’Alfort. Rev Avic. 1991;3: 91–5.
19. Audigier I, Renous S. Les allures du lapin normal peuvent-elles expliquer la marche acrobatique du «lapin sauteur d’Alfort»?. Mammalia. 2002;66: 563–78. doi: 10.1515/mamm.2002.66.4.563
20. Theret M. Aspects génétiques de quelques anomalies oculaires chez les animaux domestiques. Bull Mem Soc Fr Ophtalmol. 1961; 505–514. 13980887
21. Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88: 9828–32 doi: 10.1073/pnas.88.21.9828 1682921
22. Carneiro M, Rubin CJ, Palma F Di, Albert FW, Alföldi J, Barrio AM, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345: 1074–79 doi: 10.1126/science.1253714 25170157
23. André E, Conquet F, Steinmayr M, Stratton SC, Porciatti V, Becker-André M. Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO J. 1998;17: 3867–77. doi: 10.1093/emboj/17.14.3867 9670004
24. Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development. 2016;143: 3434–48. doi: 10.1242/dev.139592 27702783
25. Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA, Zimmerman AL, et al. The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell. 2017;168: 295–310. doi: 10.1016/j.cell.2016.12.010 28041852
26. Jia L, Oh ECT, Ng L, Srinivas M, Brooks M, Swaroop A, et al. Retinoid-related orphan nuclear receptor ROR is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A. 2009;106: 17534–9. doi: 10.1073/pnas.0902425106 19805139
27. Liu H, Kim SY, Fu Y, Wu X, Ng L, Swaroop A, et al. An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nat Commun. 2013;4:1–1 doi: 10.1038/ncomms2793 23652001
28. Oishi K, Aramaki M, Nakajima K. Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc Natl Acad Sci U S A. 2016;113: 3371–6. doi: 10.1073/pnas.1515949113 26951672
29. Hilde KL, Levine AJ, Hinckley CA, Hayashi M, Montgomery JM, Gullo M, et al. Satb2 is required for the development of a spinal exteroceptive microcircuit that modulates limb position. Neuron. 2016;91: 763–76. doi: 10.1016/j.neuron.2016.07.014 27478017
30. Schaeren-Wiemers N, André E, Kapfhammer JP, Becker-André M. The expression pattern of the orphan nuclear receptor RORβ in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. Eur J Neurosci. 1997;9: 2687–701. doi: 10.1111/j.1460-9568.1997.tb01698.x 9517474
31. Del Barrio MG, Bourane S, Grossmann K, Schüle R, Britsch S, O’Leary DDM, et al. A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS One. 2013;8(11):e77928. doi: 10.1371/journal.pone.0077928 24223744
32. Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG, Stam FJ, et al. Identification of a spinal circuit for light touch and fine motor control. Cell. 2015;160(3): 503–515. doi: 10.1016/j.cell.2015.01.011 25635458
33. Paixão S, Loschek L, Gaitanos L, Morales PA, Goulding M, Klein, R. Identification of spinal neurons contributing to the dorsal column projection mediating fine touch and corrective motor movements. Neuron. 2019;104(4): 749–764. doi: 10.1016/j.neuron.2019.08.029 31586516
34. Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JE, Lönnerberg P, et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci. 2018;21:869–80. doi: 10.1038/s41593-018-0141-1 29686262
35. Perry S, Larhammar M, Vieillard J, Nagaraja C, Hilscher MM, Tafreshiha A, et al. Characterization of Dmrt3-derived neurons suggest a role within locomotor circuits. J Neurosci. 2019;39:1771–82. doi: 10.1523/JNEUROSCI.0326-18.2018 30578339
36. Andrews S. FastQC: A quality control tool for high throughput sequence data. [Cited 2020 September 23]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc
37. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–20. doi: 10.1093/bioinformatics/btu170 24695404
38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–60. doi: 10.1093/bioinformatics/btp324 19451168
39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–9. doi: 10.1093/bioinformatics/btp352 19505943
40. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907v2 [Preprint]. 2012 [cited 2020 September 23]. Available from: https://arxiv.org/abs/1207.3907
41. Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464: 587–91. doi: 10.1038/nature08832 20220755
42. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2014;6: 80–92. doi: 10.4161/fly.19695 22728672
43. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: An algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6: 677–81. doi: 10.1038/nmeth.1363 19668202
44. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28: i333–9. doi: 10.1093/bioinformatics/bts378 22962449
45. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: A probabilistic framework for structural variant discovery. Genome Biol. 2014;15: R84. doi: 10.1186/gb-2014-15-6-r84 24970577
46. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29: 24–6. doi: 10.1038/nbt.1754 21221095
47. Brusini I, Carneiro M, Wang C, Rubin C-J, Ring H, Afonso S, et al. Changes in brain architecture are consistent with altered fear processing in domestic rabbits. Proc Natl Acad Sci U S A. 2018;115: 7380–5. doi: 10.1073/pnas.1801024115 29941556
48. Carneiro M, Hu D, Archer J, Feng C, Afonso S, Chen C, et al. Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 locus. Genetics. 2017;205: 955–65. doi: 10.1534/genetics.116.196667 27986804
49. McInnes JC, Alderman R, Deagle BE, Lea MA, Raymond B, Jarman SN. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol Evol. 2017;8: 192–202. doi: 10.1111/2041-210X.12677
50. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34: 3094–3100. doi: 10.1093/bioinformatics/bty191 29750242
51. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3: 1101–1108. doi: 10.1038/nprot.2008.73 18546601
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 3
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- DNA polymerase theta suppresses mitotic crossing over
- Synaptonemal Complex dimerization regulates chromosome alignment and crossover patterning in meiosis
- IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling
- The capacity of origins to load MCM establishes replication timing patterns