Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency
Autoři:
Ken Batai aff001; Zuxi Cui aff002; Amit Arora aff003; Ebony Shah-Williams aff004; Wenndy Hernandez aff005; Maria Ruden aff006; Courtney M. P. Hollowell aff006; Stanley E. Hooker aff007; Madhavi Bathina aff007; Adam B. Murphy aff008; Carolina Bonilla aff009; Rick A. Kittles aff007
Působiště autorů:
Department of Urology, University of Arizona, Tucson, Arizona, United States of America
aff001; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
aff002; Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
aff003; Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana United States of America
aff004; Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
aff005; Department of Surgery, Cook County Health and Hospitals System, Chicago, Illinois, United States of America
aff006; Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
aff007; Department of Urology, Northwestern University, Chicago, Illinois, United States of America
aff008; Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
aff009; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
aff010
Vyšlo v časopise:
Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency. PLoS Genet 17(2): e1009319. doi:10.1371/journal.pgen.1009319
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009319
Souhrn
A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10−30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04–1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.
Klíčová slova:
vitamín D – Genetic loci – Genetics – Genome-wide association studies – Genomics – Human genetics – Single nucleotide polymorphisms – Vitamin D deficiency
Zdroje
1. Eriksson N, Macpherson JM, Tung JY, Hon LS, Naughton B, Saxonov S, et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 2010;6:e1000993. doi: 10.1371/journal.pgen.1000993 20585627
2. Stokowski RP, Pant PVK, Dadd T, Fereday A, Hinds DA, Jarman C, et al. A genomewide association study of skin pigmentation in a South Asian population. Am J Hum Genet. 2007;81(6):1119–32. doi: 10.1086/522235 17999355
3. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Jakobsdottir M, et al. Two newly identified genetic determinants of pigmentation in Europeans. Nat Genet. 2008;40(7):835–7. http://www.nature.com/ng/journal/v40/n7/suppinfo/ng.160_S1.html doi: 10.1038/ng.160 18488028
4. Nan H, Kraft P, Qureshi AA, Guo Q, Chen C, Hankinson SE, et al. Genome-Wide Association Study of Tanning Phenotype in a Population of European Ancestry. J Invest Dermatol. 2009;129(9):2250–7. http://www.nature.com/jid/journal/v129/n9/suppinfo/jid200962s1.html doi: 10.1038/jid.2009.62 19340012
5. Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4:e1000074. doi: 10.1371/journal.pgen.1000074 18483556
6. Morgan MD, Pairo-Castineira E, Rawlik K, Canela-Xandri O, Rees J, Sims D, et al. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nat Commun. 2018;9(1):5271. doi: 10.1038/s41467-018-07691-z PubMed Central PMCID: PMC6288091 30531825
7. Adhikari K, Mendoza-Revilla J, Sohail A, Fuentes-Guajardo M, Lampert J, Chacón-Duque JC, et al. A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat Commun. 2019;10(1):358. doi: 10.1038/s41467-018-08147-0 30664655
8. Crawford NG, Kelly DE, Hansen MEB, Beltrame MH, Fan S, Bowman SL, et al. Loci associated with skin pigmentation identified in African populations. Science. 2017;358(6365). doi: 10.1126/science.aan8433 PubMed Central PMCID: PMC5759959. 29025994
9. Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell. 2017;171(6):1340–53.e14. doi: 10.1016/j.cell.2017.11.015 29195075
10. Lona-Durazo F, Hernandez-Pacheco N, Fan S, Zhang T, Choi J, Kovacs MA, et al. Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations. BMC Genet. 2019;20(1):59–. doi: 10.1186/s12863-019-0765-5 31315583.
11. Jablonski NG, Chaplin G. The colours of humanity: the evolution of pigmentation in the human lineage. Philos Trans R Soc Lond B Biol Sci. 2017;372(1724). doi: 10.1098/rstb.2016.0349 28533464
12. Frost P. Human skin color: a possible relationship between its sexual dimorphism and its social perception. Perspect Biol Med. 1988;32:38–58. doi: 10.1353/pbm.1988.0010 3059317
13. Ihara Y, Aoki K. Sexual selection by male choice in monogamous and polygynous human populations. Theor Popul Biol. 1999;55(1):77–93. doi: 10.1006/tpbi.1998.1388 9925810
14. Aoki K. Sexual selection as a cause of human skin colour variation: Darwin’s hypothesis revisited. Ann Hum Biol. 2002;29:589–608. doi: 10.1080/0301446021000019144 12573076
15. Madrigal L, Kelly W. Human skin-color sexual dimorphism: a test of the sexual selection hypothesis. Am J Phys Anthropol. 2007;132:470–82. doi: 10.1002/ajpa.20453 16685728
16. Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41(8):920–5. http://www.nature.com/ng/journal/v41/n8/suppinfo/ng.411_S1.html doi: 10.1038/ng.411 19578364
17. Duffy DL, Zhao ZZ, Sturm RA, Hayward NK, Martin NG, Montgomery GW. Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J Invest Dermatol. 2010;130:520–8. http://www.nature.com/jid/journal/v130/n2/suppinfo/jid2009258s1.html doi: 10.1038/jid.2009.258 19710684
18. Gerstenblith MR, Shi J, Landi MT. Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis. Pigment Cell Melanoma Res. 2010;23:587–606. doi: 10.1111/j.1755-148X.2010.00730.x 20546537
19. Nan H, Xu M, Kraft P, Qureshi AA, Chen C, Guo Q, et al. Genome-wide association study identifies novel alleles associated with risk of cutaneous basal cell carcinoma and squamous cell carcinoma. Human Molecular Genetics. 2011. doi: 10.1093/hmg/ddr287 21700618
20. Vanchinathan V, Lim HW. A dermatologist’s perspective on vitamin D. Mayo Clin Proc. 2012;87:372–80. doi: 10.1016/j.mayocp.2011.12.010 22425213
21. Liu F, Wollstein A, Hysi PG, Ankra-Badu GA, Spector TD, Park D, et al. Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci. PLoS Genet. 2010;6:e1000934. doi: 10.1371/journal.pgen.1000934 20463881
22. Spichenok O, Budimlija ZM, Mitchell AA, Jenny A, Kovacevic L, Marjanovic D, et al. Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci Int Genet. 2011;5(5):472–8. doi: 10.1016/j.fsigen.2010.10.005 21050833
23. Goldsmith AH, Hamilton D, Jr WD. From dark to light: skin color and wages among African-Americans. J Hum Resour. 2007;42:701–38.
24. Blair IV, Steiner JF, Havranek EP. Unconscious (implicit) bias and health disparities: Where do we go from here? Perm J. 2011;15:71–8.
25. Krieger N, Sidney S, Coakley E. Racial discerimination and skin color in the CARDIA study: Implications for public health research. Am J Public Health. 1998;88:1308–13. doi: 10.2105/ajph.88.9.1308 9736868
26. Harrison MS, Thomas KM. The hidden prejudice in selection: a research investigation on skin color bias. J Appl Soc Psychol. 2009;39:134–68. doi: 10.1111/j.1559-1816.2008.00433.x
27. Kittles RA, Santos ER, Oji-Njideka N, Bonilla C. Race, skin color and genetic ancestry: Implications for biomedical research on health disparities. Californian Journal of Health Promotion. 2007;5:9–23.
28. Parra EJ, Kittles RA, Shriver MD. Implications of correlations between skin color and genetic ancestry for biomedical research. Nature Genetics. 2004;36:S54–S60. doi: 10.1038/ng1440 15508005
29. Bonilla C, Boxill L-A, Donald SAM, Williams T, Sylvester N, Parra EJ, et al. The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Hum Genet. 2005;116(5):402–6. doi: 10.1007/s00439-004-1251-2 15726415
30. Bonilla C, Hooker S, Mason T, Bock CH, Kittles RA. Prostate cancer susceptibility loci identified on chromosome 12 in African Americans. PLoS ONE. 2011;6(2):e16044. doi: 10.1371/journal.pone.0016044 21358824
31. Batai K, Murphy A, Shah E, Ruden M, Newsome J, Agate S, et al. Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum Genet. 2014;133(11):1395–405. doi: 10.1007/s00439-014-1472-y PubMed Central PMCID: PMC4185105. 25085266
32. Batai K, Murphy AB, Ruden M, Newsome J, Shah E, Dixon MA, et al. Race and BMI modify associations of calcium and vitamin D intake with prostate cancer. BMC Cancer. 2017;17(1):64. doi: 10.1186/s12885-017-3060-8 PubMed Central PMCID: PMC5248493. 28103838
33. Teteh DK, Dawkins-Moultin L, Hooker S, Hernandez W, Bonilla C, Galloway D, et al. Genetic ancestry, skin color and social attainment: The four cities study. PLoS One. 2020;15(8):e0237041. doi: 10.1371/journal.pone.0237041 32813691.
34. Shriver MD, Parra EJ. Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry. Am J Phys Anthropol. 2000;112(1):17–27. doi: 10.1002/(SICI)1096-8644(200005)112:1<17::AID-AJPA3>3.0.CO;2-D 10766940
35. Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C, et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet. 2003;112(4):387–99. doi: 10.1007/s00439-002-0896-y 12579416
36. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academy Press; 2011.
37. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. doi: 10.1056/NEJMra070553 17634462
38. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of clinical endocrinology and metabolism. 2011;96:1911–30. doi: 10.1210/jc.2011-0385 21646368
39. Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet. 2011;43(6):570–3. doi: 10.1038/ng.839 PubMed Central PMCID: PMC3102788. 21602798
40. Pibiri F, Kittles RA, Sandler RS, Keku TO, Kupfer SS, Xicola RM, et al. Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans. Cancer Causes Control. 2014;25:561–70. doi: 10.1007/s10552-014-0361-y 24562971
41. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19(13):2739–45. doi: 10.1093/hmg/ddq155 20418485
42. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8. doi: 10.1016/S0140-6736(10)60588-0 20541252
43. Tian C, Hinds DA, Shigeta R, Kittles R, Ballinger DG, Seldin MF. A genomewide single-nucleotide polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet. 2006;79(4):640–9. doi: 10.1086/507954 16960800
44. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012;9(2):179–81. doi: 10.1038/nmeth.1785 22138821
45. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499–511. http://www.nature.com/nrg/journal/v11/n7/suppinfo/nrg2796_S1.html doi: 10.1038/nrg2796 20517342
46. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011;1(6):457–70. doi: 10.1534/g3.111.001198 22384356
47. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164(4):1567–87. PubMed Central PMCID: PMC1462648. 12930761
48. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59. 10835412
49. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019;28(R2):R133–r42. Epub 2019/08/01. doi: 10.1093/hmg/ddz187 31363735.
50. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. doi: 10.1086/519795 PubMed Central PMCID: PMC1950838. 17701901
51. Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL, Aros MC, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 2005;310(5755):1782–6. doi: 10.1126/science.1116238 16357253
52. Hernandez-Pacheco N, Flores C, Alonso S, Eng C, Mak ACY, Hunstman S, et al. Identification of a novel locus associated with skin colour in African-admixed populations. Sci Rep. 2017;7:44548. doi: 10.1038/srep44548 https://www.nature.com/articles/srep44548#supplementary-information 28300201
53. Beleza S, Johnson NA, Candille SI, Absher DM, Coram MA, Lopes J, et al. Genetic architecture of skin and eye color in an African-European admixed population. PLOS Genetics. 2013;9(3):e1003372. doi: 10.1371/journal.pgen.1003372 23555287
54. Candille SI, Absher DM, Beleza S, Bauchet M, McEvoy B, Garrison NA, et al. Genome-wide association studies of quantitatively measured skin, hair, and eye pigmentation in four European populations. PloS one. 2012;7(10):e48294–e. Epub 2012/10/31. doi: 10.1371/journal.pone.0048294 23118974.
55. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007;39(12):1443–52. Epub 2007/10/21. doi: 10.1038/ng.2007.13 17952075.
56. Hwang SJ, Yang Q, Meigs JB, Pearce EN, Fox CS. A genome-wide association for kidney function and endocrine-related traits in the NHLBI’s Framingham Heart Study. BMC medical genetics. 2007;8 Suppl 1(Suppl 1):S10. Epub 2007/10/16. doi: 10.1186/1471-2350-8-S1-S10 17903292; PubMed Central PMCID: PMC1995611.
57. Galas L, Raoult E, Tonon M-C, Okada R, Jenks BG, Castaño JP, et al. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164(1):40–50. doi: 10.1016/j.ygcen.2009.05.003 19435597
58. Gáspár E, Nguyen-Thi KT, Hardenbicker C, Tiede S, Plate C, Bodó E, et al. Thyrotropin-releasing hormone selectively stimulates human hair follicle pigmentation. J Invest Dermatol. 2011;131(12):2368–77. Epub 2011/10/01. doi: 10.1038/jid.2011.221 21956127.
59. van Beek N, Bodó E, Kromminga A, Gáspár E, Meyer K, Zmijewski MA, et al. Thyroid hormones directly alter human hair follicle functions: anagen prolongation and stimulation of both hair matrix keratinocyte proliferation and hair pigmentation. The Journal of clinical endocrinology and metabolism. 2008;93(11):4381–8. Epub 2008/08/30. doi: 10.1210/jc.2008-0283 18728176.
60. Funk RA, Stewart AJ, Wooldridge AA, Kwessi E, Kemppainen RJ, Behrend EN, et al. Seasonal changes in plasma adrenocorticotropic hormone and α-melanocyte-stimulating hormone in response to thyrotropin-releasing hormone in normal, aged horses. J Vet Intern Med. 2011;25(3):579–85. doi: 10.1111/j.1939-1676.2011.0712.x 21457320
61. Yuen AWC, Jablonski NG. Vitamin D: In the evolution of human skin colour. Medical Hypotheses. 2010;74(1):39–44. doi: 10.1016/j.mehy.2009.08.007 19717244
62. Clemens TL, Henderson SL, Adams JS, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;319:74–6. doi: 10.1016/s0140-6736(82)90214-8 6119494
63. Armas LAG, Dowell S, Akhter M, Duthuluru S, Huerter C, Hollis BW, et al. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color. J Am Acad Dermatol. 2007;57:588–93. doi: 10.1016/j.jaad.2007.03.004 17637484
64. Xiang F, Lucas R, de Gruijl F, Norval M. A systematic review of the influence of skin pigmentation on changes in the concentrations of vitamin D and 25-hydroxyvitamin D in plasma/serum following experimental UV irradiation. Photochem Photobiol Sci. 2015;14(12):2138–46. doi: 10.1039/c5pp00168d 26548800
65. Signorello LB, Williams SM, Zheng W, Smith JR, Long J, Cai Q, et al. Blood vitamin D levels in relation to genetic estimation of African ancestry. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2325–31. doi: 10.1158/1055-9965.EPI-10-0482 20647395
66. Haddad SA, Ruiz-Narváez EA, Cozier YC, Gerlovin H, Rosenberg L, Palmer JR. Association of degree of European genetic ancestry with serum vitamin D levels in African Americans. Am J Epidemiol. 2018;187(7):1420–3. Epub 2018/02/02. doi: 10.1093/aje/kwy015 29390092; PubMed Central PMCID: PMC6030900.
67. Chan J, Jaceldo-Siegl K, Fraser G. Determinants of serum 25 hydroxyvitamin D levels in a nationwide cohort of blacks and non-Hispanic whites. Cancer Causes Control. 2010;21:501–11. doi: 10.1007/s10552-009-9481-1 PubMed Central PMCID: PMC3427006. 20012182
68. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLOS Medicine. 2008;5(8):e177. doi: 10.1371/journal.pmed.0050177 18752343
69. Bonilla C, Ness AR, Wills AK, Lawlor DA, Lewis SJ, Davey Smith G. Skin pigmentation, sun exposure and vitamin D levels in children of the Avon Longitudinal Study of Parents and Children. BMC Public Health. 2014;14:597–. doi: 10.1186/1471-2458-14-597 24924479.
70. Bonilla C, Gilbert R, Kemp JP, Timpson NJ, Evans DM, Donovan JL, et al. Using genetic proxies for lifecourse sun exposure to assess the causal relationship of sun exposure with circulating vitamin d and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22(4):597–606. Epub 2013/02/25. doi: 10.1158/1055-9965.EPI-12-1248 23441100.
71. Odeh H, Hunker KL, Belyantseva IA, Azaiez H, Avenarius MR, Zheng L, et al. Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am J Hum Genet. 2010;86(2):148–60. Epub 2010/02/04. doi: 10.1016/j.ajhg.2010.01.016 20137774.
72. Schraders M, Lee K, Oostrik J, Huygen PLM, Ali G, Hoefsloot LH, et al. Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet. 2010;86(2):138–47. doi: 10.1016/j.ajhg.2009.12.017 20137778
73. Jacobs LC, Liu F, Bleyen I, et al. Intrinsic and extrinsic risk factors for sagging eyelids. JAMA Dermatol. 2014;150(8):836–43. doi: 10.1001/jamadermatol.2014.27 24869959
74. Hernando B, Ibarrola-Villava M, Fernandez LP, Peña-Chilet M, Llorca-Cardeñosa M, Oltra SS, et al. Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin. Biol Sex Differ. 2016;7:17–. doi: 10.1186/s13293-016-0070-1 26998216.
75. Hernando B, Ibarrola-Villava M, Peña-Chilet M, Alonso S, Ribas G, Martinez-Cadenas C. Sex and MC1R variants in human pigmentation: Differences in tanning ability and sensitivity to sunlight between sexes. J Dermatol Sci. 2016;84(3):346–8. Epub 2016/09/13. doi: 10.1016/j.jdermsci.2016.09.004 27637409.
76. Natale CA, Duperret EK, Zhang J, Sadeghi R, Dahal A, O’Brien KT, et al. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. eLife. 2016;5:e15104. doi: 10.7554/eLife.15104 27115344
77. Graf J, Hodgson R, van Daal A. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Hum Mutat. 2005;25(3):278–84. doi: 10.1002/humu.20143 15714523.
78. Quillen EE, Bauchet M, Bigham AW, Delgado-Burbano ME, Faust FX, Klimentidis YC, et al. OPRM1 and EGFR contribute to skin pigmentation differences between Indigenous Americans and Europeans. Hum Genet. 2012;131(7):1073–80. Epub 2011/12/24. doi: 10.1007/s00439-011-1135-1 22198722.
79. Kenny EE, Timpson NJ, Sikora M, Yee M-C, Moreno-Estrada A, Eng C, et al. Melanesian blond hair is caused by an amino acid change in TYRP1. Science. 2012;336(6081):554–. doi: 10.1126/science.1217849 22556244.
80. Sturm RA. Molecular genetics of human pigmentation diversity. Hum Mol Genet. 2009;18(R1):R9–R17. doi: 10.1093/hmg/ddp003 19297406
81. Duffy DL, Montgomery GW, Chen W, Zhao ZZ, Le L, James MR, et al. A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am J Hum Genet. 2007;80(2):241–52. Epub 2006/12/20. doi: 10.1086/510885 17236130.
82. Liu F, Wollstein A, Hysi PG, Ankra-Badu GA, Spector TD, Park D, et al. Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genet. 2010;6(5):e1000934–e. doi: 10.1371/journal.pgen.1000934 20463881.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 2
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Glucocerebrosidase reduces the spread of protein aggregation in a Drosophila melanogaster model of neurodegeneration by regulating proteins trafficked by extracellular vesicles
- ATF3 downmodulates its new targets IFI6 and IFI27 to suppress the growth and migration of tongue squamous cell carcinoma cells
- Transcriptome-wide transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder
- Four families of folate-independent methionine synthases