#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cirkulující plazmocyty u monoklonálních gamapatií


Autoři: R. Bezdekova 1,2;  M. Penka 1;  R. Hájek 2,3;  L. Rihova 1,2
Působiště autorů: Department of Clinical Hematology, University Hospital Brno, Czech Republic 1;  Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic 2;  Department of Haematooncology, University Hospital Ostrava, Czech Republic 3
Vyšlo v časopise: Klin Onkol 2017; 30(Supplementum2): 29-34
Kategorie: Přehled
doi: https://doi.org/10.14735/amko20172S29

Souhrn

Východiska:
Monoklonální gamapatie jsou charakteristické přítomností klonálních plazmocytů v kostní dřeni, nicméně cirkulující plazmatické buňky lze u významné části pacientů nalézt i v periferní krvi. Počet cirkulujících plazmatických buněk je nezávislým prognostickým faktorem asociovaným s kratším přežíváním, ale také může napomoci předvídat časný relaps. Příčina a mechanizmus vycestování klonálních plazmocytů z kostní dřeně stále není objasněna, nicméně může zahrnovat např. změny v expresi adhezivních molekul. Multiparametrická průtoková cytometrie umožňuje jednoduché a přesné stanovení zastoupení cirkulujících plazmocytů v jakékoli buněčné suspenzi, a to i při velmi nízkých počtech, vč. stanovení jejich fenotypu a potvrzení příslušnosti ke klonálním plazmocytům kostní dřeně. V současnosti však v klinických laboratořích není používán jednotný postup k analýze cirkulujících plazmocytů.

Cíl:
Souhrnná práce popisuje využití průtokové cytometrie v analýze cirkulujících plazmocytů v periferní krvi. Zaměřuje se na možnosti detekce pomocí různých přístupů a také na klinický význam stanovení těchto buněk s cílem standardizace analýz.

Závěr:
Multiparametrická průtoková cytometrie je vhodnou a dostatečně citlivou metodou pro detekci cirkulujících myelomových klonálních plazmocytů. Využití standardizovaného přístupu může vést ke stanovení a zavedení nového „průtokově cytometrického” diagnostického kritéria u suspektních případů plazmocelulární leukemie, a může být využito také v rámci prognostikace pacientů s monoklonální gamapatií. Mimoto, stanovení fenotypového profilu klonálních plazmocytů by mohlo napomoci objasnit jejich budoucí chování.

Klíčová slova:
monoklonální gamapatie – crkulující plazmatické buňky – plazmocelulární leukemie – průtoková cytometrie

Práce byla podpořena grantem MZ ČR – RVO (FNBr, 65269705).

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdrženo:
23. 6. 2017

Přijato:
30. 6. 2017


Zdroje

1. Kumar S, Rajkumar SV, Kyle RA et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol 2005; 23 (24): 5668–5674.

2. Nowakowski GS, Witzig TE, Dingli D et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 2005; 106 (7): 2276–2279.

3. Fernández de Larrea C, Kyle RA, Durie BG et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia 2013; 27 (4): 780–791. doi: 10.1038/leu.2012.336.

4. Kyle RA, Maldonado JE, Bayrd ED. Plasma cell leukemia. Report on 17 cases. Arch Intern Med 1974; 133 (5): 813–818.

5. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121 (5): 749–757.

6. Paiva B, Vidriales MB, Pérez JJ et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica 2009; 94 (11): 1599–1602. doi: 10.3324/haematol.2009.009100.

7. Flores-Montero J, Sanoja-Flores L, Paiva B et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017. doi: 10.1038/leu.2017.29.

8. Dörner T, Radbruch A. Selecting B cells and plasma cells to memory. J Exp Med 2005; 201 (4): 497–499.

9. Medina F, Segundo C, Campos-Caro A et al. The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002; 99 (6): 2154–2161.

10. Caraux A, Klein B, Paiva B et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138– and CD138– plasma cells. Haematologica 2010; 95 (6): 1016–1020. doi: 10.3324/haematol.2009.018689.

11. Jourdan M, Caraux A, De Vos J et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2009; 114 (25): 5173–5181. doi: 10.1182/blood-2009-07-235960.

12. Pellat-Deceunynck C, Bataille R. Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol Dis 2004; 32 (2): 293–301.

13. Jego G, Avet-Loiseau H, Robillard N et al. Reactive plasmacytoses in multiple myeloma during hematopoietic recovery with G-or GM-CSF. Leuk Res 2000; 24 (7): 627–630.

14. Rawstron AC, Owen RG, Davies FE et al. Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. Br J Haematol 1997; 97 (1): 46–55.

15. Billadeau D, Van Ness B, Kimlinger T et al. Clonal circulating cells are common in plasma cell proliferative disorders: a comparison of monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and active myeloma. Blood 1996; 88 (1): 289–296.

16. Kyle RA. The monoclonal gammopathies. Clin Chem 1994; 40 (11): 2154–2161.

17. Gonsalves WI, Rajkumar SV, Gupta V et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia 2014; 28 (10): 2060–2065. doi: 10.1038/leu.2014.98.

18. Gonsalves WI, Rajkumar SV, Dispenzieri A et al. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression. Leukemia 2016; 31 (1): 130–135. doi: 10.1038/leu.2016.205.

19. McElroy EA Jr, Witzig TE, Gertz MA et al. Detection of monoclonal plasma cells in the peripheral blood of patients with primary amyloidosis. Br J Haematol 1998; 100 (2): 326–327.

20. Kumar S, Witzig TE, Greipp PR et al. Bone marrow angiogenesis and circulating plasma cells in multiple myeloma. Br J Haematol 2003; 122 (2): 272–274.

21. An G, Qin X, Acharya C et al. Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients. Ann Hematol 2015; 94 (2): 257–264. doi: 10.1007/s00277-014-2211-0.

22. Paiva B, Paino T, Sayagues JM et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013; 122 (22): 3591–3598. doi: 10.1182/blood-2013-06-510453.

23. Pellat-Deceunynck C, Barillé S, Jego G et al. The absence of CD56 (NCAM) on malignant plasma cells is a hall-mark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia 1998; 12 (12): 1977–1982.

24. Granell M, Calvo X, Garcia-Guiñón A et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukaemia definition. Haematologica 2017; 102 (6): 1099–1104. doi: 10.3324/haematol.2016.158303.

25. Witzig TE, Gertz MA, Lust JA et al. Peripheral blood monoclonal plasma cells as a predictor of survival in patients with multiple myeloma. Blood 1996; 88 (5): 1780–1787.

26. Witzig TE, Kyle RA, O’Fallon WM et al. Detection of peripheral blood plasma cells as a predictor of disease course in patients with smouldering multiple myeloma. Br J Haematol 1994; 87 (2): 266–272.

27. Vagnoni D, Travaglini F, Pezzoni V et al. Circulating plasma cells in newly diagnosed symptomatic multiple myeloma as a possible prognostic marker for patients with standard-risk cytogenetics. Br J Haematol 2015; 170 (4): 523–531. doi: 10.1111/bjh.13484.

28. San Miguel JF, Gutiérrez NC, Mateo G et al. Conventional diagnostics in multiple myeloma. Eur J Cancer 2006; 42 (11): 1510–1519.

29. Paiva B, Pérez-Andrés M, Vídriales MB et al. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia 2011; 25 (4): 697–706. doi: 10.1038/leu.2010.320.

30. Burgos L, Alignani D, Garces JJ et al. Non-Invasive Genetic Profiling Is Highly Applicable in Multiple Myeloma (MM) through Characterization of Circulating Tumor Cells (CTCs). Blood 2016; 128 (22): 801.

31. Sanoja-Flores L, Paiva B, Flores-Montero JA et al. Next Generation Flow (NGF): A High Sensitive Technique to Detect Circulating Peripheral Blood (PB) Clonal Plasma Cells (cPC) in Patients with Newly Diagnosed of Plasma Cell Neoplasms (PCN). Blood 2015; 126 (23): 4180–4180.

32. Qasaimeh MA, Wu YC, Bose S et al. Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device. Sci Rep 2017; 7: 45681. doi: 10.1038/srep45681.

33. Schneider U, van Lessen A, Huhn D et al. Two subsets of peripheral blood plasma cells defined by differential expression of CD45 antigen. Br J Haematol 1997; 97 (1): 56–64.

34. Paiva B, Almeida J, Pérez-Andrés M et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom 2010; 78 (4): 239–252. doi: 10.1002/cyto.b.20512.

35. Rihova L, Raja KR, Leite LA et al. Immunophenotyping in Multiple Myeloma and Others Monoclonal Gammopathies. 2013 [cited 2017 Jun 27]. Available from: http: //www.intechopen.com/books/multiple-myeloma-a-quick-reflection-on-the-fast-progress/immunophenotyping-in-multiple-myeloma-and-others-monoclonal-gammopathies.

36. Sevcikova T, Kryukov F, Brozova L et al. Gene Expression Profile of Circulating Myeloma Cells Reveals CD44 and CD97 (ADGRE5) Overexpression. Blood 2016; 128 (22): 5639.

37. Van Camp B, Durie BG, Spier C et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990; 76 (2): 377–382.

38. Walsh FS, Doherty P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 1997; 13 (1): 425–456.

39. Pellat-Deceunynck C, Barillé S, Puthier D et al. Adhesion Molecules on Human Myeloma Cells: Significant Changes in Expression Related to Malignancy, Tumor Spreading, and Immortalization. Cancer Res 1995; 55 (16): 3647–3653.

40. Sahara N, Takeshita A, Shigeno K et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol 2002; 117 (4): 882–885.

41. Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol 2002; 160 (4): 1293–1299.

42. Hundemer M, Klein U, Hose D et al. Lack of CD56 expression on myeloma cells is not a marker for poor prognosis in patients treated by high-dose chemotherapy and is associated with translocation t (11; 14). Bone Marrow Transplant 2007; 40 (11): 1033–1037.

43. Dahl IM, Rasmussen T, Kauric G et al. Differential expression of CD56 and CD44 in the evolution of extramedullary myeloma. Br J Haematol 2002; 116 (2): 273–277.

44. Bladé J, Fernández de Larrea C, Rosiñol L et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol 2011; 29 (28): 3805–3812. doi: 10.1200/JCO.2011.34.9290.

45. Bianchi G, Kyle RA, Larson DR et al. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia 2013; 27 (3): 680–685. doi: 10.1038/leu.2012. 237.

46. Dingli D, Nowakowski GS, Dispenzieri A et al. Flow cytometric detection of circulating myeloma cells before transplantation in patients with multiple myeloma: a simple risk stratification system. Blood 2006; 107 (8): 3384–3388.

47. Pardanani A, Witzig TE, Schroeder G et al. Circulating peripheral blood plasma cells as a prognostic indicator in patients with primary systemic amyloidosis. Blood 2003; 101 (3): 827–830.

48. Witzig TE, Dhodapkar MV, Kyle RA et al. Quantitation of circulating peripheral blood plasma cells and their relationship to disease activity in patients with multiple myeloma. Cancer 1993; 72 (1): 108–113.

49. Peceliunas V, Janiulioniene A, Matuzeviciene R et al. Circulating plasma cells predict the outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma 2012; 53 (4): 641–647. doi: 10.3109/10428194.2011.627481.

50. Chakraborty R, Muchtar E, Kumar SK et al. Risk stratification in myeloma by detection of circulating plasma cells prior to autologous stem cell transplantation in the novel agent era. Blood Cancer J 2016; 6 (12): e512. doi: 10.1038/bcj.2016.117.

51. Gonsalves WI, Morice WG, Rajkumar V et al. Quantification of clonal circulating plasma cells in relapsed multiple myeloma. Br J Haematol 2014; 167 (4): 500–505. doi: 10.1111/bjh.13067.

52. Rawstron A, Barrans S, Blythe D et al. Distribution of myeloma plasma cells in peripheral blood and bone marrow correlates with CD56 expression. Br J Haematol 1999; 104 (1): 138–143.

53. Billadeau D, Quam L, Thomas W et al. Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 1992; 80 (7): 1818–1824.

54. Noel P, Kyle RA. Plasma cell leukemia: an evaluation of response to therapy. Am J Med 1987; 83 (6): 1062–1068.

55. Tiedemann RE, Gonzalez-Paz N, Kyle RA et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia 2008; 22 (5): 1044–1052. doi: 10.1038/leu.2008.4.

56. García-Sanz R, Orfão A, González M et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood 1999; 93 (3): 1032–1037.

57. Johnson MR, Del Carpio-Jayo D, Lin P et al. Primary plasma cell leukemia: morphologic, immunophenotypic, and cytogenetic features of 4 cases treated with chemotherapy and stem cell transplantation. Ann Diagn Pathol 2006; 10 (5): 263–268.

58. Gonsalves WI, Rajkumar SV, Go RS et al. Trends in survival of patients with primary plasma cell leukemia: a population-based analysis. Blood 2014; 124 (6): 907–912. doi: 10.1182/blood-2014-03-565051.

59. Drake MB, Iacobelli S, van Biezen A et al. Primary plasma cell leukemia and autologous stem cell transplantation. Haematologica 2010; 95 (5): 804–809. doi: 10.3324/haematol.2009.013334.

60. Hayman SR, Fonseca R. Plasma cell leukemia. Curr Treat Options Oncol 2001; 2 (3): 205–216.

61. Kraj M, Kopeć-Szlęzak J, Pogłód R et al. Flow cytometric immunophenotypic characteristics of 36 cases of plasma cell leukemia. Leuk Res 2011; 35 (2): 169–176. doi: 10.1016/j.leukres.2010.04.021.

62. Morgan TK, Zhao S, Chang KL et al. Low CD27 expression in plasma cell dyscrasias correlates with high-risk disease: an immunohistochemical analysis. Am J Clin Pathol 2006; 126 (4): 545–551.

63. Pérez-Andrés M, Almeida J, Martín-Ayuso M et al. Clonal plasma cells from monoclonal gammopathy of undetermined significance, multiple myeloma and plasma cell leukemia show different expression profiles of molecules involved in the interaction with the immunological bone marrow microenvironment. Leukemia 2005; 19 (3): 449–455.

64. Robillard N, Jego G, Pellat-Deceunynck C et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin Cancer Res 1998; 4 (6): 1521–1526.

65. Walters M, Olteanu H, Van Tuinen P et al. CD23 expression in plasma cell myeloma is specific for abnormalities of chromosome 11, and is associated with primary plasma cell leukaemia in this cytogenetic sub-group. Br J Haematol 2010; 149 (2): 292–293.

66. Jelinek T, Kryukov F, Rihova L et al. Plasma cell leukemia: from biology to treatment. Eur J Haematol 2015; 95 (1): 16–26. doi: 10.1111/ejh.12533.

67. Luque R, García-Trujillo JA, Cámara C et al. CD106 and activated-CD29 are expressed on myelomatous bone marrow plasma cells and their downregulation is associated with tumour progression. Br J Haematol 2002; 119 (1): 70–78.

68. Gounari E, Tsavdaridou V, Koletsa T et al. Utility of hematology analyzer and flow cytometry in timely and correct detection of circulating plasma cells: report of three cases. Cytometry B Clin Cytom 2016; 90 (6): 531–537. doi: 10.1002/cyto.b.21350.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo Supplementum2

2017 Číslo Supplementum2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Kardiologické projevy hypereozinofilií
nový kurz
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Role IL-5 v patogenezi zánětu typu 2
Autoři: MUDr. Jakub Novosad, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#