Hereditary amyloidosis – aetiology, clinical features and treatment options
Authors:
Z. Kufová 1,2,3; T. Pika 4; T. Jelínek 1; F. Kryukov 1,2; R. Hájek 1,2,3
Authors‘ workplace:
Klinika hematoonkologie, Fakultní nemocnice Ostrava
1; Lékařská fakulta, Ostravská univerzita v Ostravě
2; Babákova myelomová skupina, Lékařská fakulta, Masarykova univerzita
3; Hemato-onkologická klinika, Lékařská fakulta Univerzity Palackého a Fakultní nemocnice Olomouc
4
Published in:
Transfuze Hematol. dnes,21, 2015, No. 4, p. 184-192.
Category:
Comprehensive Reports, Original Papers, Case Reports
Amyloidózy tvoří různorodou skupinu onemocnění charakterizovanou tvorbou patologického bílkovinného materiálu s následným ukládáním v tkáních a orgánech. Příčinou hereditární amyloidózy je patologická germinální mutace v genu kódujícím některý z amyloidogenních prekurzorových proteinů. Hereditární amyloidóza patří mezi onemocnění s autozomálně dominantní dědičností a značnou fenotypovou variabilitou a penetrancí.
Overview
Amyloidosis represents a heterogeneous group of diseases characterized by the deposition of pathological material of protein nature in target tissues and organs. Hereditary amyloidosis is a disease with autosomal dominant inheritance and considerable phenotypic variability and penetrance. It is caused by a germline mutation in the gene encoding amyloidogenic precursor protein. Development of hereditary amyloidosis is currently associated with mutations in the following amyloidogenic precursor proteins: transthyretin, apolipoprotein AI and AII, fibrinogen, gelsolin, lysozyme, cystatin C. Worldwide incidence of hereditary amyloidosis is highly variable with clearly visible differences between endemic areas and non-endemic areas. The incidence of hereditary amyloidosis in the Czech Republic remains unknown. As hereditary amyloidosis is a rare disease and awareness among physicians is low, diagnosis is often very difficult. Due to the hereditary nature of the disease, carefully acquired family medical history is a key from a diagnostic aspect. This review described the seven most common types of hereditary amyloidosis, their genetic background, clinical features and treatment options.
Key words:
hereditary amyloidosis, transthyretin, apolipoprotein, lysozyme, gelsolin, fibrinogen, cystatin C
Sources
1. Sipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 2014; 21: 221–224.
2. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. New Engl J Med 1997; 337: 898–909.
3. Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica 2014; 99: 209–221.
4. Conceição I, De Carvalho M. Clinical variability in type I familial amyloid polyneuropathy (Val30Met): comparison between late- and early-onset cases in Portugal. Muscle Nerve 2007; 35: 116–118.
5. Ando Y, Coelho T, Berk JL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 2013; 8: 31.
6. Gertz MA, Kyle RA, Thibodeau SN. Familial amyloidosis: a study of 52 North American-born patients examined during a 30-year period. Mayo Clin Proc 1992; 67: 428–440.
7. Steensma DP. ‘Congo’ red: out of Africa? Arch Path Lab Med 2001; 125: 250–252.
8. Comenzo RL, Zhou P, Fleisher M, et al. Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins. Blood 2006; 107: 3489–3491.
9. Herlenius G, Wilczek HE, Larsson M, et al. Familial Amyloidotic Polyneuropathy World Transplant Registry (2004). Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation 2004; 77: 64–71.
10. Pinney JH, Lachmann HJ, Sattianayagam PT, et al. Renal transplantation in systemic amyloidosis-importance of amyloid fibril type and precursor protein abundance. Am J Transplant 2013; 13: 433–441.
11. Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril protein nomenclature: recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012; 19: 167–170.
12. Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 2007; 36: 411–423.
13. Lastovičková J. Hereditární amyloidóza s defektem transthyretinu a její neurologické projevy. Neurologie pro praxi 2011; 12(2): 142–144.
14. Hazenberg BPC. Amyloidosis: A clinical overview. Rheumat Dis Clin North Amer 2013; 39: 323–345.
15. Zeldenrust SR. ATTR: Diagnosis, prognosis, and treatment. In: Gertz MA, Rajkumar SV. Amyloidosis: Diagnosis and treatment. Humana Press, Springer, New York 2010.
16. Ryšavá R. Systémové amyloidózy a jejich léčba. Maxdorf, Praha 2013.
17. Wixner J, Karling P, Rydh A, et al. Gastric emptying in hereditary transthyretin amyloidosis: the impact of autonomic neuropathy. Neurogastroenterol Motility 2012; 24: 1111- e568.
18. Fikrle M, Palecek T, Kuchynka P, et al. Cardiac amyloidosis: A comprehensive review. Cor et Vasa 2013; 55: 60–75.
19. Traynor CA, Tighe D, O’Brien FJ, et al. Clinical and pathologic characteristics of hereditary apolipoprotein A-I amyloidosis in Ireland. Nephrology 2013; 18: 549–554.
20. Raimondi S, Guglielmi F, Giorgetti S, et al. Effects of the known pathogenic mutations on the aggregation pathway of the amyloidogenic peptide of apolipoprotein A-I. J Mol Biol 2011; 407: 465–476.
21. Haase CL, Frikke-Schmidt R, Nordestgaard BG, et al. Population--based resequencing of APOA1 in 10,330 individuals: Spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genetics 2012; 8(11): e1003063.
22. Eriksson M, Schonland S, Yumlu S, et al. Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimen. J Mol Diagn 2009; 3: 257–262.
23. Ramella NA, Rimoldi OJ, Prieto ED, et al. Human apolipoprotein A-I--derived amyloid: its association with atherosclerosis. PLoS ONE 2011; 6(7): e22532.
24. Obici L, Bellotti V, Mangione P, et al. The new apolipoprotein A-I variant Leu174Ser causes hereditary cardiac amyloidosis, and the amyloid fibrils are constituted by the 93-residue N-terminal polypeptide. Am J Pathol 1999; 155(3): 695–702.
25. Testro AG, Brennan SO, Macdonell RAL, et al. Hereditary amyloidosis with progressive peripheral neuropathy associated with apolipoprotein AI Gly26Arg: Outcome of hepatorenal transplantation. Liver Transplant 2007; 13: 1028–1031.
26. Gursky O. Hot spots in apolipoprotein A-II misfolding and amyloidosis in mice and men. FEBS Letters 2014; 18; 588(6): 845–850.
27. Benson MD, Liepnieks JJ, Yazaki M, et al. A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 2001; 72: 272–277.
28. Yazaki M, Liepnieks JJ, Barats MS, et al. Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon sta-tion Stop78Arg. Kidney Int 2003; 64(1): 11–16.
29. Sawashita J, Kametani F, Hasegawa K, et al. Amyloid fibrils formed by selective N-, C-terminal sequences of mouse apolipoprotein A-II. Biochim Biophys Acta 2009; 1794(10): 1517–1529.
30. Picken MM. Fibrinogen amyloidosis: the clot thickens! Blood 2010; 115(15): 2985–2986.
31. Stangou AJ, Banner NR, Hendry BM, et al. Hereditary fibrinogenA - chain amyloidosis: phenotypic characterization of a systemic disease and the role of liver transplantation. Blood 2010; 115(15): 2998–3007.
32. Tennent GA, Brennan SO, Stangou AJ, et al. Human plasma fibrinogen is synthetized in the liver. Blood 2007; 109(5): 1971–1974.
33. Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. New Engl J Med 2002; 346: 1786–1791.
34. Barreiros AP, Galle PR, Otto G. Familial amyloid polyneuropathy. Digest Dis 2013; 311:170–174.
35. Utrobičić I, Novak I, Marinović-Terzic I, et al. Carpal tunnel syndrome is associated with high fibrinogen and fibrinogen deposits. Neurosurgery 2014; 75(3): 276–285.
36. Benson MD. Other systemic form of amyloidosis. In: Gertz MA, Rajkumar SV. Amyloidosis: Diagnosis and treatment. Humana Press, Springer, New York 2010.
37. Solomon JP, Page LJ, Balch WE, Kelly JW. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit Rev Bioch Mol Biol 2012; 47(3): 282–296.
38. Taira M, Ishiura H, Mitsui J, et al. Clinical features and haplotype analysis of newly identified Japanese patients with gelsolin-related familial amyloidosis of Finnish type. Neurogenetics 2012; 13(3): 237–243.
39. Kiuru-Enari S, Somer H, Seppalainen AM, et al. Neuromuscular pathology in hereditary gelsolin amyloidosis. J Neuropathol Exp Neurol 2002; 61: 565–571.
40. Kantanen M, Kiuru-Enari S, Salonen O, et al. Subtle neuropsychiatric and neurocognitive changes in hereditary gelsolin amyloidosis (AGel amyloidosis). PeerJ 2014; 2:e493.
41. Yamada M. Cerebral amyloid angiopathy and gene polymorphisms. J Neurol Sci 2004; 15; 226(1-2): 41–44.
42. Juusela P, Tanskanen M, Nieminen A, et al. Hereditary gelsolin amyloidosis mimicking Sjögren’s syndrome. Clin Rheumatol 2009; 28(11): 1351–1354.
43. Röcken Ch, Becker K, Fändrich M, et al. ALys amyloidosis caused by compound heterozygosity in exon 2 (Thr70Asn) and exon 4 (Trp112Arg) of the lysozyme gene. Human Mut 2006; 27(1): 119–120.
44. Granel B, Serratrice J, Disdier P, et al. Underdiagnosed amyloidosis: Amyloidosis of lysozyme variant. Am J Med 2005; 118:321–322.
45. Granel B, Valleix S, Serratrice J, et al. Lysozyme amyloidosis, Report of 4 cases and a review of the literature. Medicine 2006; 85: 66–73.
46. Gillmore JD, Booth DR, Madhoo S, et al. Hereditary renal amyloidosis associated with variant lysozyme in large English family. Nephrol Dialysis Transplant 1999; 14: 2639–2644.
47. Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009; 118(1): 115–130.
48. Palsdottir A, Helgason A, Palsson S, et al. A drastic reduction in the life span of cystatin C L68Q carriers due to life-style changes during the last two centuries. PLoS Genetics 2008; 20; 4(6): e1000099.
49. Revesz T, Ghiso J, Lashley T, et al. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 2003; 62(9): 885–898.
50. Abrahamson M, Grubb A. Increased body temperature accelerates aggregation of the Leu68 Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc Nat Acad Sci 1994; 91: 1416–1420.
Labels
Haematology Internal medicine Neurology Clinical oncologyArticle was published in
Transfusion and Haematology Today
2015 Issue 4
Most read in this issue
- Iron metabolism in blood donors
- Hereditary amyloidosis – aetiology, clinical features and treatment options
- The cytomorphology and immunophenotype of mantle-cell lymphoma
- The role of rituximab maintenance in elderly patients with mantle cell lymphoma in first remission – single centre experience