#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

VEXAS syndrome – a diagnosis at the interface of rheumatology and haematology


Authors: M. Vostrý 1;  B. Stibůrková 2;  H. Mann 2;  V. Balajková 2;  H. Ciferská 2;  J. Soukupová Maaloufová 1;  C. Šálek 1,3;  M. Beličková 1,3
Authors‘ workplace: Ústav hematologie a krevní transfuze, Praha 1;  Revmatologický ústav a Klinika revmatologie 1. LF UK, Praha 2;  Ústav klinické a experimentální hematologie, 1. LF UK, Praha 3
Published in: Transfuze Hematol. dnes,30, 2024, No. 2, p. 83-90.
Category: Review/Educational Papers
doi: https://doi.org/10.48095/cctahd2024prolekare.cz6

Overview

SUMMARY: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a rare autoinflammatory late-onset disease caused by the UBA1 gene somatic mutation in haematopoietic progenitor cells. In patients, we can observe systemic symptoms (fever and fatigue), inflammatory manifestations on the skin, in the eye area, and involvement of the lungs, blood vessels, and cartilage with associated haematological symptoms such as macrocytic anaemia, thrombocytopenia, and presence of vacuoles in myeloid and erythroid precursors. In most cases, patients are refractory to common anti-inflammatory and immunosuppressive treatments and have a higher risk of developing haematological malignancies. Subsequently, inflammation and bone marrow failure often lead to severe morbidity and significant mortality. Currently, there is no effective standardized therapy. Haematopoietic stem cell transplantation may be a suitable treatment for a specific group of patients. Hypomethylating agents and/or drugs targeting cytokine and inflammatory response pathways appear to be other therapeutic options. Together with an overview of VEXAS syndrome, we present two case reports of patients with the UBA1 mutations detected in our laboratory.

Keywords:

Vacuoles – inflammation – VEXAS syndrome – UBA1 – MDS


Sources

1. Beck DB, Ferrada MA, Sikora KA, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020; 383 (27): 2628–2638. doi: 10.1056/NEJMOA2026834.

2. Beck DB, Bodian DL, Shah V, et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA. 2023; 329 (4): 318–324. doi: 10.1001/jama.2022.24836.

3. Takahashi N, Takeichi T, Nishida T, et al. Extensive multiple organ involvement in VEXAS syndrome. Arthritis Rheumatol. 2021; 73 (10): 1896–1897. doi: 10.1002/art.41775.

4. Grayson PC, Patel BA, Young NS. VEXAS syndrome. Blood. 2021; 137 (26): 3591–3594. doi: 10.1182/blood.2021011455.

5. Ferrada MA, Sikora KA, Luo Y, et al. Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS. Arthritis Rheumatol. 2021; 73 (10): 1886–1895. doi: 10.1002/art.41743.

6. Obiorah IE, Beck DB, Wang W, et al. Myelodysplasia and bone marrow manifestations of somatic UBA1 mutated autoinflammatory disease. Blood. 2020; 136 (Suppl 1): 20–21. doi: 10.1182/blood-2020-140480.

7. Georgin-Lavialle S, Terrier B, Guedon AF, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022; 186 (3): 564–574. doi: 10.1111/bjd.20805.

8. Olafsson S, Anderson CA. Somatic mutations provide important and unique insights into the biology of complex diseases. Trends Genet. 2021; 37 (10): 872–881. doi: 10.1016/ j.tig.2021.06.012.

9. Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021; 58 (4): 212–217. doi: 10.1053/j.semin- hematol.2021.10.001.

10. Patel BA, Ferrada MA, Grayson PC, Beck DB. VEXAS syndrome: An inflammatory and hematologic disease. Semin Hematol. 2021; 58 (4): 201–203. doi: 10.1053/j.seminhematol.2021.10.005.

11. Levy-Lahad E, King MC. Hiding in plain sight – somatic mutation in human disease. N Engl J Med. 2020; 383 (27): 2680–2682. doi: 10.1056/NEJMe2030754.

12. Ramser J, Ahearn ME, Lenski C, et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet. 2008; 82 (1): 188–193. doi: 10.1016/j.ajhg.2007.09.009.

13. Templé M, Duroyon E, Croizier C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatology (Oxford). 2021; 60 (12): e435–e437. doi: 10.1093/rheumatology/keab524.

14. Poulter JA, Collins JC, Cargo C, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021; 137 (26): 3676–3681. doi: 10.1182/blood.2020010286.

15. Bourbon E, Heiblig M, Gerfaud Valentin M, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021; 137 (26): 3682–3684. doi: 10.1182/blood. 2020010177.

16. Stiburkova B, Pavelcova K, Belickova M, et al. Novel somatic UBA1 variant in a patient with VEXAS syndrome. Arthritis Rheumatol. 2023; 75 (7): 1285–1290. doi: 10.1002/art.42471.

17. Carrel L, Clemson CM, Dunn JM, et al. X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse. Hum Mol Genet. 1996; 5 (3): 391–401. doi: 10.1093/ hmg/5.3.391.

18. Stubbins RJ, McGinnis E, Johal B, et al. VEXAS syndrome in a female patient with constitutional 45,X (Turner syndrome). Haematologica. 2022; 107 (4): 1011–1013. doi: 10.3324/ haematol.2021.280238.

19. Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016; 7 (34): 55863–55889. doi: 10.18632/ oncotarget.10150.

20. Aki T, Nara A, Uemura K. Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biol Toxicol. 2012; 28 (3): 125–131. doi: 10.1007/s10565-012-9212-3.

21. Yeung KY, Klug PP, Lessin LS. Lessin Alcohol-induced vacuolization in bone marrow cells: Ultrastructure and mechanism of formation. Blood Cells. 1988; 13 (3): 487–502.

22. Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012; 19 (1): 58–60. doi: 10.1097/MOH.0b013e 32834da9d2.

23. Houwerzijl EJ, Pol HW, Blom NR, van der Want JJ, de Wolf JT, Vellenga E. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria. Leukemia. 2009; 23 (5): 886–891. doi: 10.1038/leu.2008. 389.

24. Lytle A, Bagg A. VEXAS: a vivid new syndrome associated with vacuoles in various hematopoietic cells. Blood. 2021; 137 (26): 3690. doi: 10.1182/blood.2021010714.

25. Gurnari C, Pagliuca S, Durkin L, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood. 2021; 137 (26): 3685–3689. doi: 10.1182/blood.2021010811.

26. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014; 371 (26): 2488–2498. doi: 10.1056/NEJMoa 1408617.

27. Steensma DP, Bejar R, Jaiswal S, et al. Perspectives clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015; 126 (1): 9–16. doi: 10.1182/blood-2015-03-631747.

28. Dharan NJ, Yeh P, Bloch M, et al. HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat Med. 2021; 27 (6): 1006–1011. doi: 10.1038/ s41591-021-01357-y.

29. Arends CM, Weiss M, Christen F, et al. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica. 2020; 105 (6): e264–e267. doi: 10.3324/haematol.2019.223305.

30. Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol. 2021; 58 (4): 226–229. doi: 10.1053/j.seminhematol.2021.10.004.

31. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: From clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017; 17 (1): 5–19. doi: 10.1038/ nrc.2016.112.

32. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014; 28 (2): 241–247. doi: 10.1038/leu.2013.336.

33. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013; 122 (22): 3616–3699. doi: 10.1182/blood-2013-08-518886.

34. Obiorah IE, Patel BA, Groarke EM, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021; 5 (16): 3203–3215. doi: 10.1182/bloodadvances.2021004976.

35. Heiblig M, Patel BA, Groarke EM, Bourbon E, Sujobert P. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021; 58 (4): 239–246. doi: 10.1053/ j.seminhematol.2021.09.001.

36. Loschi M, Roux C, Sudaka I, et al. Allogeneic stem cell transplantation as a curative therapeutic approach for VEXAS syndrome: a case report. Bone Marrow Transplant. 2022; 57 (2): 315–318. doi: 10.1038/s41409-021-01544-y.

37. Gurnari C, McLornan DP. Update on VEXAS and role of allogeneic bone marrow transplant: considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2022; 57 (11): 1642–1648. doi: 10.1038/s41409-022-01774-8.

38. Khan C, Pathe N, Fazal S, Lister J, Rossetti JM. Azacitidine in the management of patients with myelodysplastic syndromes. Ther Adv Hematol. 2012; 3 (6): 355–373. doi: 10.1177/ 2040620712464882.

39. Patel BA, Young NS. Towards treatments for VEXAS. Br J Haematol. 2022; 196 (4): 804–805. doi: 10.1111/bjh.17930.

40. Comont T, Heiblig M, Rivière E, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022; 196 (4): 969–974. doi: 10.1111/bjh.17893.

41. Mekinian A, Zhao LP, Chevret S, et al. A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML. Leukemia. 2022; 36 (11): 2739–2742. doi: 10.1038/ s41375-022-01698-8.

42. Khitri MY, Guedon AF, Georgin-Lavialle S, et al. Comparison between idiopathic and VEXAS-relapsing polychondritis: analysis of a French case series of 95 patients. RMD Open. 2022; 8 (2): e002255. doi: 10.1136/rmdopen- 2022-002255.

43. Heiblig M, Ferrada MA, Koster MJ, et al. Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multicenter study [published correction appears in Blood. 2023; 141 (13): 1647]. Blood. 2022; 140 (8): 927–931. doi: 10.1182/blood.2022016642.

PODÍL AUTORŮ NA PŘÍPRAVĚ RUKOPISU

MV – příprava rukopisu, provádění laboratorních vyšetření, korekce rukopisu, závěrečná kontrola rukopisu

BS, HM – revize a korekce rukopisu

VB, HC, JSM, CŠ – léčba pacientů, revize a korekce rukopisu

MB – revize a korekce rukopisu, závěrečná kontrola rukopisu

PODĚKOVÁNÍ

Práce byla realizována za podpory grantové agentury MZČR (NU23-10-00160).

Autoři děkují za poskytnutí cytologického obrazu kostní dřeně MUDr. Radce Šimečkové.

ČESTNÉ PROHLÁŠENÍ

Autoři práce prohlašují, že v souvislosti s tématem, vznikem a publikací tohoto článku nejsou ve střetu zájmů a vznik ani publikace článku nebyly podpořeny žádnou farmaceutickou firmou.

Do redakce doručeno dne: 3. 10. 2023.
Přijato po recenzi dne: 6. 11. 2023.
RNDr. Monika Beličková, Ph.D.
Ústav hematologie a krevní transfuze
Oddělení genomiky
U Nemocnice 2094/1
128 00 Praha 2
e-mail: monika.belickova@uhkt.cz
Labels
Haematology Internal medicine Clinical oncology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#