#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Viewpoints of occupational therapists, physiotherapists, and patients regarding traditional and novel approaches to Constraint-induced movement therapy in the Czech Republic


Authors: Sýkorová Bonková J. 1;  Vondrová K. 2,3;  Angerová Y. 2;  Hána K. 1
Authors‘ workplace: Katedra informačních a komunikačních technologií v lékařství, Fakulta bio medicínského inženýrství, ČVUT v Praze, Kladno 1;  Klinika rehabilitačního lékařství 1. LF UK a VFN v Praze 2;  Klinika rehabilitace a tělovýchovného lékařství 2. LF UK a FN Motol, Praha 3
Published in: Rehabil. fyz. Lék., 31, 2024, No. 4, pp. 157-167.
Category: Original Papers
doi: https://doi.org/10.48095/ccrhfl 2024157

Overview

Background: The comprehensive therapeutic program, Constraint-induced movement therapy (CIMT), focuses on functional training of the paretic upper limb and the transfer of acquired skills in daily life. Aim: The purpose of the survey was to map the current experience of therapists and patients with the therapeutic toolkit and home activity monitoring. Methods: The components of CIMT currently used, monitoring forms, barriers to provision, and motivations and subjectively perceived limitations for the use of technology in rehabilitation for activity monitoring were explored with the use of on-line surveys. Results: A total of 95 occupational therapists and physiotherapists and 91 patients participated in the survey. Czech therapists reported the most common perceived barriers that limit CIMT provision were as follows: low number of suitable patients, lack of knowledge of the method, increased administrative and time demands, or concerns about the high demands of the method for patients. The patients themselves are then limited in participating in the program due to its low accessibility or fear of the high difficulty of the exercise. As part of monitoring, patients complete a paper exercise diary (36%) or less frequently one on a computer (6.7%), but most often they do not track the results (40.4%). A total of 55% of patient respondents are motivated to share their results electronically with their therapist. Conclusions: According to the survey results, patients with spastic paresis of the upper limb after brain injury are motivated to participate in remote therapy and share results of home exercise remotely. The application of innovative approaches in CIMT and activity monitoring increases the availability of therapeutic interventions with potential cost reduction in clinical practice.

Keywords:

monitoring – stroke – occupational therapy – Physiotherapy – Constraint-induced movement therapy – remote therapy


Sources
1. Kwakkel G, Veerbeek JM, van Wegen EEH et al. Constraint-induced movement therapy after stroke. Lancet Neurol 2015; 14 (2): 224–234. doi: 10.1016/S1474-4422 (14) 70160-7.
2. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke 2013; 8 (1): 25–32. doi: 10.1111/j.1747-49 49.2012.00967.x.
3. Baude M, Nielsen JB, Gracies JM. The neurophysiology of deforming spastic paresis: a revised taxonomy. Ann Phys Rehabil Med 2019; 62 (6): 426–430. doi: 10.1016/j.rehab.2018.10.004.
4. Yamamoto H, Takeda K, Koyama S et al. The relationship between upper limb function and activities of daily living without the effects of lower limb function: a cross-sectional study. Br J Occup Ther 2022; 85 (5): 360–366. doi: 10.1177/03080226211030088.
5. Lawinger E, Uhl TL, Abel M et al. Assessment of accelerometers for measuring upper-extremity physical activity. J Sport Rehabil 2015; 24 (3): 236–243. doi: 10.1123/jsr.2013-0140.
6. Maier M, Ballester BR, Verschure PF. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci 2019; 13: 74. doi: 10.3389/fnsys.2019.00074.
7. Uswatte G, Taub E. Implications of the learned nonuse formulation for measuring rehabilitation outcomes: lessons from constraint-induced movement therapy. Rehabil Psychol 2005; 50 (1): 34–42. doi: 10.1037/0090-5550.50.1.34.
8. Platz T (ed). Clinical pathways in stroke rehabilitation: evidence-based clinical practice recommendations. Cham (CH): Springer 2021. doi: 10.1007/978-3-030-58505-1.
9. Nijland R, van Wegen E, van der Krogt H et al. Characterizing the protocol for early modified constraint-induced movement therapy in the EXPLICIT-stroke trial. Physiother Res Int 2013; 18 (1): 1–15. doi: 10.1002/pri.1521.
10. De Azevedo JA, Barbosa FDS, Seixas VM et al. Effects of constraint-induced movement therapy on activity and participation after a stroke: systematic review and meta-analysis. Front Hum Neurosci 2022; 16: 987061. doi: 10.3389/fnhum.2022.987061.
11. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J Rehabil Res Dev 1999; 36 (3): 237–251.
12. Kwakkel G, Winters C, van Wegen EE et al. Effects of unilateral upper limb training in two distinct prognostic groups early after stroke. Neurorehab Neural Repair 2016; 30 (9): 804–816. doi: 10.1177/1545968315624784.
13. Morris DM, Taub E, Mark VW et al. Protocol for a randomized controlled trial of CI therapy for rehabilitation of upper extremity motor deficit: the bringing rehabilitation to american veterans everywhere project. J Head Trauma Rehabil 2019; 34 (4): 268–279. doi: 10.1097/HTR.0000000000000460.
14. Wolf SL, Blanton S, Baer H et al. Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 2002; 8 (6): 325–338. doi: 10.1097/01.nrl.0000031014.85777.76.
15. Corbetta D, Sirtori V, Castellini G et al. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 2015; 2015 (10): CD004433. doi: 10.1002/14651858.CD004433.pub3.
16. Morris DM, Taub E, Mark VW. Constraint-induced movement therapy: characterizing the intervention protocol. Eura Medicophys 2006; 42 (3): 257–268.
17. Taub E, Uswatte G, Mark VW et al. Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke 2013; 44 (5): 1383–1388. doi: 10.1161/STROKEAHA. 111.000559.
18. Horsáková P, Krivošíková M, Švestková O. Terapie vynuceného používání u pacientů po cévní mozkové příhodě. Rehabil Fyz Lek 2017; 24 (3): 166–169.
19. Hatem SM, Saussez G, Della Faille M et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442. doi: 10.3389/fnhum.2016.00442.
20. Uswatte G, Taub E, Lum P et al. Tele-rehabilitation of upper-extremity hemiparesis after stroke: proof-of-concept randomized controlled trial of in-home constraint-induced movement therapy. Restor Neurol and Neuros 2021; 39 (4): 303–318. doi: 10.3233/RNN- 201100.
21. Christie LJ, McCluskey A, Lovarini M. Constraint‐induced movement therapy for upper limb recovery in adult neurorehabilitation: an international survey of current knowledge and experience. Aust Occup Ther J 2019; 66 (3): 401–412. doi: 10.1111/1440-1630.12567.
22. Gauthier LV, Kane C, Borstad A et al. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurol 2017; 17 (1): 109. doi: 10.1186/s12883-017-0888-0.
23. Page SJ, Levine P. Modified constraint-induced therapy extension: using remote technologies to improve function. Arch Phys Med Rehabil 2007; 88 (7): 922–927. doi: 10.1016/j.apmr.2007.03.038.
24. Terranova TT, Simis M, Santos ACA et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial. Front Neurorobot 2021; 15: 684019. doi: 10.3389/fnbot.2021.684019.
25. Abdullahi A, Candan SA, Soysal Tomruk M. Constraint-induced movement therapy protocols using the number of repetitions of task practice: a systematic review of feasibility and effects. Neurol Sci 2021; 42 (7): 2695–2703. doi: 10.1007/s10072-021-05267-2.
26. Borstad AL, Crawfis R, Phillips K et al. In-home delivery of constraint-induced movement therapy via virtual reality gaming. J Patient Cent Res Rev 2018; 5 (1): 6–17. doi: 10.17294/2330-0698.1550.
27. Smith MA, Tomita MR. Combined effects of telehealth and modified constraint-induced movement therapy for individuals with chronic hemiparesis. Int J Telerehabil 2020; 12 (1): 51–62. doi: 10.5195/ijt.2020.6300.
28. Barzel A, Ketels G, Stark A et al. Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. Lancet Neurol 2015; 14 (9): 893–902. doi: 10.1016/S1474-4422 (15) 00147-7.
29. Lemke M, Ramírez ER, Robinson B. How can constraint-induced movement therapy for stroke patients be incorporated into the design of a tangible interface? The case study of the ‘Biggest Hit’. Des J 2017; 20 (Suppl 1): S2315–S2335. doi: 10.1080/14606925.2017.1352747.
30. Page SJ, Levine P, Sisto S et al. Stroke patients‘ and therapists‘ opinions of constraint--induced movement therapy. Clin Rehabil 2002; 16 (1): 55–60. doi: 10.1191/0269215502cr473oa.
31. Daniel L, Howard W, Braun D et al. Opinions of constraint-induced movement therapy among therapists in southwestern Ohio. Top Stroke Rehabil 2012; 19 (3): 268–275. doi: 10.1310/tsr1903-268.
32. Fleet A, Che M, Mackay-Lyons M et al. Examining the use of constraint-induced movement therapy in Canadian neurological occupational and physical therapy. Physiother Can 2014; 66 (1): 60–71. doi: 10.3138/ptc.2012-61.
33. Uswatte G, Taub E, Morris D et al. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 2006; 67 (7): 1189–1194. doi: 10.1212/01.wnl.000023 8164.90657.c2.
34. Page SJ, Levine P, Leonard A et al. Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Phys Ther 2008; 88 (3): 333–340. doi: 10.2522/ptj.20060029.
35. Andrabi M, Taub E, Mckay Bishop S et al. Acceptability of constraint induced movement therapy: influence of perceived difficulty and expected treatment outcome. Top Stroke Rehabil 2022; 29 (7): 507–515. doi: 10.1080/10749357.2021.1956046.
36. Taub E, Lum PS, Hardin P et al. AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke 2005; 36 (6): 1301–1304. doi: 10.1161/01.STR.0000166043.27545.e8.
37. Lum PS, Uswatte G, Taub E et al. A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil Res Dev 2006; 43 (3). doi: 10.1682/JRRD.2005. 02.0042.
38. Gauthier LV, Nichols-Larsen DS, Uswatte G et al. Video game rehabilitation for outpatient stroke (VIGoROUS): a multi-site randomized controlled trial of in-home, self-managed, upper-extremity therapy. EClinicalMedicine 2021; 43: 101239. doi: 10.1016/j.eclinm.2021. 101239.
39. Sanchez L, Asuncion BM, Tayag KR et al. Effectiveness of constraint‐induced movement therapy (CIMT) – telerehabilitation compared to traditional CIMT on upper extremity dysfunction of adult chronic stroke patients – a systematic review and meta‐analysis. Physiother Res Int 2024; 29 (3): e2090. doi: 10.1002/pri.2090.
40. Laver KE, Adey-Wakeling Z, Crotty M et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev 2020; 1 (1): CD010255. doi: 10.1002/14651858.CD010255.pub3.
41. Ciortea VM, Motoașcă I, Ungur RA et al. Telerehabilitation – a viable option for the recovery of post-stroke patients. Appl Sci 2021; 11 (21): 10116. doi: 10.3390/app112110116.
42. Appleby E, Gill ST, Hayes LK et al. Effectiveness of telerehabilitation in the management of adults with stroke: a systematic review. PloS One 2019; 14 (11): e0225150. doi: 10.1371/journal.pone.0225150.
43. Tchero H, Tabue Teguo M, Lannuzel A et al. Telerehabilitation for stroke survivors: Systematic review and meta-analysis. J Med Internet Res 2018; 20 (10): e10867. doi: 10.2196/ 10867.
44. Shamweel H, Gupta N. Constraint-induced movement therapy through telerehabilitation for upper extremity function in stroke. J Neurorestoratology 2024; 12 (2): 100108. doi: 10.1016/j.jnrt.2024.100108.
45. Uswatte G, Foo WL, Olmstead H et al. Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil 2005; 86 (7): 1498–1501. doi: 10.1016/j.apmr.2005.01.010.
46. Doman CA, Waddell KJ, Bailey RR et al. Changes in upper-extremity functional capacity and daily performance during outpatient occupational therapy for people with stroke. Am J Occup Ther 2016; 70 (3): 7003290040p1–7003290040p11. doi: 10.5014/ajot.2016.020891.
47. Heye AL, Kersting C, Kneer M et al. Suitability of accelerometry as an objective measure for upper extremity use in stroke patients. BMC Neurol 2022; 22 (1): 220. doi: 10.1186/s12883-022-02743-w.
48. Bezuidenhout L, Joseph C, Einarsson U et al. Accelerometer assessed upper limb activity in people with stroke: a validation study considering ambulatory and non-ambulatory activities. Disabil Rehabil 2022; 44 (26): 8463–8470. doi: 10.1080/09638288.2021.2012838.
Doručeno/Submitted: 29. 7. 2024
Přijato/Accepted: 25. 11. 2024
Korespondenční autor:
Mgr. Bc. Jitka Bonková Sýkorová
Fakulta biomedicínského inženýrství ČVUT v Praze
Katedra informačních a komunikačních technologií v lékařství
Studničkova 7
128 00 Praha 2
e-mail: jitka.sykorova@cvut.cz
Labels
Physiotherapist, university degree Rehabilitation Sports medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#