1. Kwakkel G, Veerbeek JM, van Wegen EEH et al. Constraint-induced movement therapy after stroke. Lancet Neurol 2015; 14 (2): 224–234. doi: 10.1016/S1474-4422 (14) 70160-7.
2. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke 2013; 8 (1): 25–32. doi: 10.1111/j.1747-49 49.2012.00967.x.
3. Baude M, Nielsen JB, Gracies JM. The neurophysiology of deforming spastic paresis: a revised taxonomy. Ann Phys Rehabil Med 2019; 62 (6): 426–430. doi: 10.1016/j.rehab.2018.10.004.
4. Yamamoto H, Takeda K, Koyama S et al. The relationship between upper limb function and activities of daily living without the effects of lower limb function: a cross-sectional study. Br J Occup Ther 2022; 85 (5): 360–366. doi: 10.1177/03080226211030088.
5. Lawinger E, Uhl TL, Abel M et al. Assessment of accelerometers for measuring upper-extremity physical activity. J Sport Rehabil 2015; 24 (3): 236–243. doi: 10.1123/jsr.2013-0140.
6. Maier M, Ballester BR, Verschure PF. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci 2019; 13: 74. doi: 10.3389/fnsys.2019.00074.
7. Uswatte G, Taub E. Implications of the learned nonuse formulation for measuring rehabilitation outcomes: lessons from constraint-induced movement therapy. Rehabil Psychol 2005; 50 (1): 34–42. doi: 10.1037/0090-5550.50.1.34.
8. Platz T (ed). Clinical pathways in stroke rehabilitation: evidence-based clinical practice recommendations. Cham (CH): Springer 2021. doi: 10.1007/978-3-030-58505-1.
9. Nijland R, van Wegen E, van der Krogt H et al. Characterizing the protocol for early modified constraint-induced movement therapy in the EXPLICIT-stroke trial. Physiother Res Int 2013; 18 (1): 1–15. doi: 10.1002/pri.1521.
10. De Azevedo JA, Barbosa FDS, Seixas VM et al. Effects of constraint-induced movement therapy on activity and participation after a stroke: systematic review and meta-analysis. Front Hum Neurosci 2022; 16: 987061. doi: 10.3389/fnhum.2022.987061.
11. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation – a clinical review. J Rehabil Res Dev 1999; 36 (3): 237–251.
12. Kwakkel G, Winters C, van Wegen EE et al. Effects of unilateral upper limb training in two distinct prognostic groups early after stroke. Neurorehab Neural Repair 2016; 30 (9): 804–816. doi: 10.1177/1545968315624784.
13. Morris DM, Taub E, Mark VW et al. Protocol for a randomized controlled trial of CI therapy for rehabilitation of upper extremity motor deficit: the bringing rehabilitation to american veterans everywhere project. J Head Trauma Rehabil 2019; 34 (4): 268–279. doi: 10.1097/HTR.0000000000000460.
14. Wolf SL, Blanton S, Baer H et al. Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 2002; 8 (6): 325–338. doi: 10.1097/01.nrl.0000031014.85777.76.
15. Corbetta D, Sirtori V, Castellini G et al. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 2015; 2015 (10): CD004433. doi: 10.1002/14651858.CD004433.pub3.
16. Morris DM, Taub E, Mark VW. Constraint-induced movement therapy: characterizing the intervention protocol. Eura Medicophys 2006; 42 (3): 257–268.
17. Taub E, Uswatte G, Mark VW et al. Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke 2013; 44 (5): 1383–1388. doi: 10.1161/STROKEAHA. 111.000559.
18. Horsáková P, Krivošíková M, Švestková O. Terapie vynuceného používání u pacientů po cévní mozkové příhodě. Rehabil Fyz Lek 2017; 24 (3): 166–169.
19. Hatem SM, Saussez G, Della Faille M et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442. doi: 10.3389/fnhum.2016.00442.
20. Uswatte G, Taub E, Lum P et al. Tele-rehabilitation of upper-extremity hemiparesis after stroke: proof-of-concept randomized controlled trial of in-home constraint-induced movement therapy. Restor Neurol and Neuros 2021; 39 (4): 303–318. doi: 10.3233/RNN- 201100.
21. Christie LJ, McCluskey A, Lovarini M. Constraint‐induced movement therapy for upper limb recovery in adult neurorehabilitation: an international survey of current knowledge and experience. Aust Occup Ther J 2019; 66 (3): 401–412. doi: 10.1111/1440-1630.12567.
22. Gauthier LV, Kane C, Borstad A et al. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurol 2017; 17 (1): 109. doi: 10.1186/s12883-017-0888-0.
23. Page SJ, Levine P. Modified constraint-induced therapy extension: using remote technologies to improve function. Arch Phys Med Rehabil 2007; 88 (7): 922–927. doi: 10.1016/j.apmr.2007.03.038.
24. Terranova TT, Simis M, Santos ACA et al. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: results from a randomized clinical trial. Front Neurorobot 2021; 15: 684019. doi: 10.3389/fnbot.2021.684019.
25. Abdullahi A, Candan SA, Soysal Tomruk M. Constraint-induced movement therapy protocols using the number of repetitions of task practice: a systematic review of feasibility and effects. Neurol Sci 2021; 42 (7): 2695–2703. doi: 10.1007/s10072-021-05267-2.
26. Borstad AL, Crawfis R, Phillips K et al. In-home delivery of constraint-induced movement therapy via virtual reality gaming. J Patient Cent Res Rev 2018; 5 (1): 6–17. doi: 10.17294/2330-0698.1550.
27. Smith MA, Tomita MR. Combined effects of telehealth and modified constraint-induced movement therapy for individuals with chronic hemiparesis. Int J Telerehabil 2020; 12 (1): 51–62. doi: 10.5195/ijt.2020.6300.
28. Barzel A, Ketels G, Stark A et al. Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. Lancet Neurol 2015; 14 (9): 893–902. doi: 10.1016/S1474-4422 (15) 00147-7.
29. Lemke M, Ramírez ER, Robinson B. How can constraint-induced movement therapy for stroke patients be incorporated into the design of a tangible interface? The case study of the ‘Biggest Hit’. Des J 2017; 20 (Suppl 1): S2315–S2335. doi: 10.1080/14606925.2017.1352747.
30. Page SJ, Levine P, Sisto S et al. Stroke patients‘ and therapists‘ opinions of constraint--induced movement therapy. Clin Rehabil 2002; 16 (1): 55–60. doi: 10.1191/0269215502cr473oa.
31. Daniel L, Howard W, Braun D et al. Opinions of constraint-induced movement therapy among therapists in southwestern Ohio. Top Stroke Rehabil 2012; 19 (3): 268–275. doi: 10.1310/tsr1903-268.
32. Fleet A, Che M, Mackay-Lyons M et al. Examining the use of constraint-induced movement therapy in Canadian neurological occupational and physical therapy. Physiother Can 2014; 66 (1): 60–71. doi: 10.3138/ptc.2012-61.
33. Uswatte G, Taub E, Morris D et al. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology 2006; 67 (7): 1189–1194. doi: 10.1212/01.wnl.000023 8164.90657.c2.
34. Page SJ, Levine P, Leonard A et al. Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Phys Ther 2008; 88 (3): 333–340. doi: 10.2522/ptj.20060029.
35. Andrabi M, Taub E, Mckay Bishop S et al. Acceptability of constraint induced movement therapy: influence of perceived difficulty and expected treatment outcome. Top Stroke Rehabil 2022; 29 (7): 507–515. doi: 10.1080/10749357.2021.1956046.
36. Taub E, Lum PS, Hardin P et al. AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke 2005; 36 (6): 1301–1304. doi: 10.1161/01.STR.0000166043.27545.e8.
37. Lum PS, Uswatte G, Taub E et al. A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil Res Dev 2006; 43 (3). doi: 10.1682/JRRD.2005. 02.0042.
38. Gauthier LV, Nichols-Larsen DS, Uswatte G et al. Video game rehabilitation for outpatient stroke (VIGoROUS): a multi-site randomized controlled trial of in-home, self-managed, upper-extremity therapy. EClinicalMedicine 2021; 43: 101239. doi: 10.1016/j.eclinm.2021. 101239.
39. Sanchez L, Asuncion BM, Tayag KR et al. Effectiveness of constraint‐induced movement therapy (CIMT) – telerehabilitation compared to traditional CIMT on upper extremity dysfunction of adult chronic stroke patients – a systematic review and meta‐analysis. Physiother Res Int 2024; 29 (3): e2090. doi: 10.1002/pri.2090.
40. Laver KE, Adey-Wakeling Z, Crotty M et al. Telerehabilitation services for stroke. Cochrane Database Syst Rev 2020; 1 (1): CD010255. doi: 10.1002/14651858.CD010255.pub3.
41. Ciortea VM, Motoașcă I, Ungur RA et al. Telerehabilitation – a viable option for the recovery of post-stroke patients. Appl Sci 2021; 11 (21): 10116. doi: 10.3390/app112110116.
42. Appleby E, Gill ST, Hayes LK et al. Effectiveness of telerehabilitation in the management of adults with stroke: a systematic review. PloS One 2019; 14 (11): e0225150. doi: 10.1371/journal.pone.0225150.
43. Tchero H, Tabue Teguo M, Lannuzel A et al. Telerehabilitation for stroke survivors: Systematic review and meta-analysis. J Med Internet Res 2018; 20 (10): e10867. doi: 10.2196/ 10867.
44. Shamweel H, Gupta N. Constraint-induced movement therapy through telerehabilitation for upper extremity function in stroke. J Neurorestoratology 2024; 12 (2): 100108. doi: 10.1016/j.jnrt.2024.100108.
45. Uswatte G, Foo WL, Olmstead H et al. Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil 2005; 86 (7): 1498–1501. doi: 10.1016/j.apmr.2005.01.010.
46. Doman CA, Waddell KJ, Bailey RR et al. Changes in upper-extremity functional capacity and daily performance during outpatient occupational therapy for people with stroke. Am J Occup Ther 2016; 70 (3): 7003290040p1–7003290040p11. doi: 10.5014/ajot.2016.020891.
47. Heye AL, Kersting C, Kneer M et al. Suitability of accelerometry as an objective measure for upper extremity use in stroke patients. BMC Neurol 2022; 22 (1): 220. doi: 10.1186/s12883-022-02743-w.
48. Bezuidenhout L, Joseph C, Einarsson U et al. Accelerometer assessed upper limb activity in people with stroke: a validation study considering ambulatory and non-ambulatory activities. Disabil Rehabil 2022; 44 (26): 8463–8470. doi: 10.1080/09638288.2021.2012838.
Doručeno/Submitted: 29. 7. 2024
Přijato/Accepted: 25. 11. 2024
Korespondenční autor:
Mgr. Bc. Jitka Bonková Sýkorová
Fakulta biomedicínského inženýrství ČVUT v Praze
Katedra informačních a komunikačních technologií v lékařství
Studničkova 7
128 00 Praha 2
e-mail: jitka.sykorova@cvut.cz