1. Murray CJ, Vos T, Lozano R et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2197–2223. doi: 10.1016/S0140-6736 (12) 61689-4.
2. Mayo NE, Wood-Dauphinee S, Ahmed S et al. Disablement following stroke. Disabil Rehabil 1999; 21 (5–6): 258–268. doi: 10.1080/096382 899297684.
3. Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 1994; 17 (2): 187–202. doi: 10.1017/S0140525X00034026.
4. Zhao LJ, Jiang LH, Zhang H et al. Effects of motor imagery training for lower limb dysfunction in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Am J Phys Med Rehabil 2023; 102 (5): 409–418. doi: 10.1097/PHM.0000000000002107.
5. Bovonsunthonchai S, Aung N, Hiengkaew V et al. A randomized controlled trial of motor imagery combined with structured progressive circuit class therapy on gait in stroke survivors. Sci Rep 2020; 10 (1): 6945. doi: 10.1038/s41598-020-63914-8.
6. García Carrasco D, Aboitiz Cantalapiedra J. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurologia 2016; 31 (1): 43–52. doi: 10.1016/j.nrl.2013.02.003.
7. Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2017; 8 (8): CD002840. doi: 10.1002/14651858.CD002840.pub4.
8. Silva S, Borges LR, Santiago L et al. Motor imagery for gait rehabilitation after stroke. Cochrane Database Syst Rev 2020; 9 (9): CD13019. doi: 10.1002/14651858.CD013019.pub2.
9. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 2007; 114 (10): 1265–1278. doi: 10.1007/s00702-007-0763-z.
10. Case LK, Pineda J, Ramachandran VS. Common coding and dynamic interactions between observed, imagined, and experienced motor and somatosensory activity. Neuropsychologia 2015; 79 (Pt B): 233–245. doi: 10.1016/j.neuropsychologia.2015.04.005.
11. Dickstein R, Deutsch JE. Motor imagery in physical therapist practice. Phys Ther 2007; 87 (7): 942–953. doi: 10.2522/ptj.20060331.
12. Barclay-Goddard RE, Stevenson TJ, Poluha W et al. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev 2011; 5: CD005950. doi: 10.1002/14651858.CD005950.pub4.
13. Hatem SM, Saussez G, Della Faille M et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442. doi: 10.3389/fnhum.2016.00442.
14. Oh DS, Choi JD. Effects of motor imagery training on balance and gait in older adults: a randomized controlled pilot study. Int J Environ Res Public Health 2021; 18 (2): 650. doi: 10.3390/ijerph18020650.
15. Ridderinkhof KR, Brass M. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris 2015; 109 (1–3): 53–63. doi: 10.1016/j.jphysparis.2015.02.003.
16. Lotze M, Halsband U. Motor imagery. J Physiol Paris 2006; 99 (4–6): 386–395. doi: 10.1016/j.jphysparis.2006.03.012.
17. Hardwick RM, Caspers S, Eickhoff SB et al. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 2018; 94: 31–44. doi: 10.1016/j.neubiorev.2018.08.003.
18. Hétu S, Grégoire M, Saimpont A et al. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 2013; 37 (5): 930–949. doi: 10.1016/j.neubiorev.2013. 03.017.
19. Loporto M, McAllister C, Williams J et al. Investigating central mechanisms underlying the effects of action observation and imagery through transcranial magnetic stimulation. J Mot Behav 2011; 43 (5): 361–373. doi: 10.1080/00222895.2011.604655.
20. Cengiz B, Boran HE. The role of the cerebellum in motor imagery. Neurosci Lett 2016; 617: 156–159. doi: 10.1016/j.neulet.2016.01.045.
21. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res 1996; 77 (1–2): 45–52. doi: 10.1016/0166-4328 (95) 00225-1.
22. Di Rienzo F, Guillot A, Daligault S et al. Motor inhibition during motor imagery: a MEG study with a quadriplegic patient. Neurocase 2014; 20 (5): 524–539. doi: 10.1080/13554794. 2013.826685.
23. Solodkin A, Hlustik P, Chen EE et al. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 2004; 14 (11): 1246–1255. doi: 10.1093/cercor/ bhh086.
24. Haltmar H, Kolářová B, Haltmar M et al. Představa pohybu – neurální podstata a mož-nosti jejího využití ve fyzioterapii. Rehabil Fyz Lék 2022; 29 (3): 130–135. doi: 10.48095/ccrhfl 2022130.
25. Guillot A, Lebon F, Rouffet D et al. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 2007; 66 (1): 18–27. doi: 10.1016/ j.ijpsycho.2007.05.009.
26. Guillot A, Collet C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res Rev 2005; 50 (2): 387–397. doi: 10.1016/ j.brainresrev.2005.09.004.
27. Hanakawa T. Organizing motor imageries. Neurosci Res 2016; 104: 56–63. doi: 10.1016/ j.neures.2015.11.003.
28. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience 2017; 341: 61–78. doi: 10.1016/j.neuroscience.2016.11.023.
29. Harris JE, Hebert A. Utilization of motor imagery in upper limb rehabilitation: a systematic scoping review. Clin Rehabil 2015; 29 (11): 1092–1107. doi: 10.1177/02692155145 66248.
30. Zimmermann-Schlatter A, Schuster C, Puhan MA et al. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil 2008; 5: 8. doi: 10.1186/1743- 0003-5-8.
31. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: pathophysiology and rehabilitation strategies. Neurophysiol Clin 2015; 45 (4–5): 335–355. doi: 10.1016/j.neucli.2015.09.005.
32. Riccio I, Iolascon G, Barillari MR et al. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med 2010; 46 (1): 19–25.
33. Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Arch Phys Med Rehabil 2005; 86 (3): 399–402. doi: 10.1016/ j.apmr.2004.10.002.
34. Gregg M, Hall C, Butler A. The MIQ-RS: a suitable option for examining movement imagery ability. Evid Based Complement Alternat Med 2010; 7 (2): 249–257. doi: 10.1093/ecam/ nem170.
35. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke 2006; 37 (7): 1941–1952. doi: 10.1161/01.STR.0000226902.43357.fc.
36. Hall CR, Martin KA. Measuring movement imagery abilities: a revision of the Movement Imagery Questionnaire. J Ment Imagery 1997; 21 (1–2): 143–154.
37. Butler AJ, Cazeaux J, Fidler A et al. The Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) is a reliable and valid tool for evaluating motor imagery in stroke populations. Evid Based Complement Alternat Med 2012; 497289. doi: 10.1155/2012/497289.
38. Haltmar H, Janura M, Elfmark M. Validizace české verze dotazníku představy pohybu Movement Imagery Questionnaire-Revised Second Version u pacientů po cévní mozkové příhodě. Rehabil Fyz Lék 2023; 30 (4): 172–182. doi: 10.48095/ccrhfl 2023172.
39. Mehrholz J, Wagner K, Rutte K et al. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 2007; 88 (10): 1314–1319. doi: 10.1016/ j.apmr.2007.06.764.
40. Stegeman DF, Hermens HJ. Standards for surface electromyography: the European project (SENIAM). In: Hermens HJ, Rau G, Disselhorst-Klug C et al. Surface ElectroMyoGraphy application areas and parameters. Proceedings of the 3rd general SENIAM workshop, Aachen, Germany 1998; 108–112.
41. Cotter KN. Mental control in musical imagery: a dual component model. Front Psychol 2019; 10: 1904. doi: 10.3389/fpsyg.2019. 01904.
42. Ghislieri M, Gastaldi L, Pastorelli S et al. Wearable inertial sensors to assess standing balance: a systematic review. Sensors (Basel) 2019; 19 (19): 4075. doi: 10.3390/s19194075.
43. Solomon JP, Kraeutner SN, Bardouille T et al. Probing the temporal dynamics of movement inhibition in motor imagery. Brain Res 2019; 1720: 146310. doi: 10.1016/j.brainres.2019. 146310.
44. Brunner R, Rutz E. Biomechanics and muscle function during gait. J Child Orthop 2013; 7 (5): 367–371. doi: 10.1007/s11832-013-0508-5.
45. Sozzi S, Honeine J-L, Do M-C et al. Leg muscle activity during tandem stance and the control of body balance in the frontal plane. Clin Neurophysiol 2013; 124 (6): 1175–1186. doi: 10.1016/j.clinph.2012.12.001.
46. Bunno Y. Motor imagery for neurorehabilitation: the F-wave study. In: Suzuki T (ed). Somatosensory and motor research. Japan: IntechOpen 2020. doi: 10.5772/intechopen.91834.
47. Brach JS, Van Swearingen JM, Perera S et al. Motor learning versus standard walking exercise in older adults with subclinical gait dysfunction: a randomized clinical trial. J Am Geriatr Soc 2013; 61 (11): 1879–1886. doi: 10.1111/ jgs.12506.
48. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task. J Neurosci 1994; 14 (5 Pt 2): 3208–3224. doi: 10.1523/JNEUROSCI.14-05-03208. 1994.
49. Grosprêtre S, Lebon F, Papaxanthis C et al. Spinal plasticity with motor imagery practice. J Physiol 2019; 597 (3): 921–934. doi: 10.1113/JP276694.
50. Wieland B, Behringer M, Zentgraf K. Effects of motor imagery training on skeletal muscle contractile properties in sports science students. PeerJ 2022; 10: e14412. doi: 10.7717/peerj.14412.
51. Goodworth AD, Peterka RJ. Influence of stance width on frontal plane postural dynamics and coordination in human balance control. J Neurophysiol 2010; 104 (2): 1103–1118. doi: 10.1152/jn.00916.2009.
52. Houdijk H, Fickert R, van Velzen J et al. The energy cost for balance control during upright standing. Gait Posture 2009; 30 (2): 150–154. doi: 10.1016/j.gaitpost.2009.05.009.
53. Heshmatollah A, Darweesh SKL, Dommershuijsen LJ et al. Quantitative gait impairments in patients with stroke or transient ischemic attack: a population-based approach. Stroke 2020; 51 (8): 2464–2471. doi: 10.1161/STROKEAHA.120.029829.
54. Steele KM, Papazian C, Feldner HA. Muscle activity after stroke: perspectives on deploying surface electromyography in acute care. Front Neurol 2020; 11: 576757. doi: 10.3389/fneur.2020.576757.
55. Chae J, Yang G, Park BK, et al. Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil Neural Repair 2002; 16 (3): 241–248. doi: 10.1177/1545968 30201600303.
56. Johnson SH, Sprehn G, Saykin AJ. Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 2002; 14 (6): 841–852. doi: 10.1162/0898929027601 91072.
57. Malouin F, Richards CL, Durand A et al. Clinical assessment of motor imagery after stroke. Neurorehabil Neural Repair 2008; 22 (4): 330–340. doi: 10.1177/15459683073 13499.
58. Yao WX, Ranganathan VK, Allexandre D et al. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength. Front Hum Neurosci 2013; 7: 561. doi: 10.3389/fnhum.2013.00561.
59. Holmes PS, Collins DJ. The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol 2001; 13 (1): 60–83. doi: 10.1080/10413 200109339004.
Poděkování
Autoři článku by rádi poděkovali všem pacientům za jejich ochotu participovat na studii.
Doručeno/Submitted: 23. 4. 2024
Přijato/Accepted: 20. 6. 2024
Korespondenční autor:
Mgr. Hana Haltmar
Katedra přírodních věd v kinantropologii Fakulta tělesné kultury
Univerzita Palackého v Olomouci
třída Míru 117
771 11 Olomouc
e-mail: hana.haltmar@upol.cz