Application of the evaluation sheet according to the Dynamic Neuromuscular Stabilization in clinical practice
Authors:
Kobesová A.; Beránková K.; Novák J.; Kolář P.
Authors‘ workplace:
Klinika rehabilitace a tělovýchovného lékařství 2. LF UK a FN Motol, Praha
Published in:
Rehabil. fyz. Lék., 31, 2024, No. 1, pp. 11-24.
Category:
Original Papers
doi:
https://doi.org/10.48095/ccrhfl 202411
Overview
This article presents the Czech version of the examination protocol according to the Dynamic Neuromuscular Stabilization (DNS) concept and its use in the clinical practice. In the introductory part, the DNS protocol is compared with the examination protocols according to the Mechanical Diagnosis and Therapy and Functional Movement Screen in terms of “intra-rater” and “inter-rater” reliability. A case report presenting complex functional assessment of a patient using a combination of DNS examination protocol, DNS Brace to evaluate postural stabilization, and a short version of the McGill University Pain Questionnaire is presented within this paper. The patient was examined by the combination of the three methods before therapy and after six weeks of the therapy. The results of the patient‘s subjective assessment and the therapist‘s clinical examination using the DNS protocol and DNS Brace confirmed a positive effect of the therapy. The combination of the DNS protocol, DNS Brace and a standardised pain questionnaire may be an appropriate examination procedure for patients with musculoskeletal disorders.
Keywords:
dynamic neuromuscular stabilization – examination protocol – postural stabilization – short version of the McGill University Pain Questionnaire
Sources
1. Chang MC, Choo YJ, Hong K et al. Treatment of upper crossed syndrome: a narrative systematic review. Healthcare 2023; 11(16): 2328. doi: 10.3390/ healthcare11162328.
2. Gonzalez-Medina G, Perez-Cabezas V, Ruiz--Molinero C et al. Effectiveness of global postural re-education in chronic non-specific low back pain: systematic review and meta-analysis. J Clin Med 2021; 10(22): 5327. doi: 10.3390/ jcm10225327.
3. Bitnar P, Stovicek J, Hlava S et al. Manual cervical traction and trunk stabilization cause significant changes in upper and lower esophageal sphincter: a randomized trial. J Manipulative Physiol Ther 2021; 44(4): 344–351. doi: 10.1016/ j.jmpt.2021.01.004.
4. Bitnar P, Stovicek J, Andel R et al. Leg raise increases pressure in lower and upper esophageal sphincter among patients with gastroesophageal reflux disease. J Bodyw Mov Ther 2015; 20(3): 518–524. doi: 10.1016/ j.jbmt.2015.12. 002.
5. Moffa A, Oliveto G, Matteo FD et al. Modified inspiratory muscle training (m-IMT) as promising treatment for gastro-oesophageal reflux disease (GERD). Acta Otorrinolaringol Esp 2020; 71(2): 65–69. doi: 10.1016/ j.otorri.2019. 01.003.
6. Brusciano L, Limongelli P, del Genio G et al. Useful parameters helping proctologists to identify patients with defaecatory disorders that may be treated with pelvic floor rehabilitation. Tech Coloproctol 2007; 11(1): 45–50. doi: 10.1007/ s10151-007-0324-3.
7. Abidi S, Ghram A, Ghroubi S et al. Impact of urinary incontinence on physical function and respiratory muscle strength in incontinent women: a comparative study between urinary incontinent and apparently healthy women. J Clin Med 2022; 11(24) 7344. doi: 10.3390/ jcm112 47344.
8. Ptaszkowski K, Paprocka-Borowicz M, Słupska L et al. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study. Clin Interv Aging 2015; 10: 1521. doi: 10.2147/ CIA. S89852.
9. Van Criekinge T, Truijen S, Schröder J et al. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil 2019; 33(6): 992–1002. doi: 10.1177/ 0269215519830159.
10. Swinnen E, Goten LV, De Koster B et al. Thorax and pelvis kinematics during walking, a comparison between children with and without cerebral palsy: a systematic review. Neurorehabilitation 2016; 38(2): 129–146. doi: 10.3233/ NRE-161303.
11. Kovari M, Stovicek J, Novak J et al. Anorectal dysfunction in multiple sclerosis patients: a pilot study on the effect of an individualized rehabilitation approach. Neurorehabilitation 2022; 50(1): 89–99. doi: 10.3233/ NRE-210226.
12. Acar Y, Ilçin N, Gürpinar B et al. Core stability and balance in patients with ankylosing spondylitis. Rheumatol Int 2019; 39(8): 1389–1396. doi: 10.1007/ s00296-019-04341-5.
13. Larwa J, Stoy C, Chafetz RS et al. Stiff landings, core stability, and dynamic knee valgus: a systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int J Environ Res Public Health 2021; 18(7): 3826. doi: 10.3390/ ijerph18073 826.
14. Barral JP, Mercier P. Visceral manipulation. Rev. ed. Seattle: Eastland Press 2005.
15. Clark DR, Lambert MI, Hunter AM. Contemporary perspectives of core stability training for dynamic athletic performance: a survey of athletes, coaches, sports science and sports medicine practitioners. Sports Med Open 2018; 4(1): 32. doi: 10.1186/ s40798-018-0150-3.
16. Kobesova A, Davidek P, Morris CE et al. Functional postural-stabilization tests according to Dynamic Neuromuscular Stabilization approach: proposal of novel examination protocol. J Bodyw Mov Ther 2020; 24(3): 84–95. doi: 10.1016/ j.jbmt.2020.01.009.
17. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function – part 2. N Am J Sports Phys Ther 2006; 1(3): 132–139.
18. May S. Classification by McKenzie mechanical syndromes: a survey of McKenzie-trained faculty. J Manipulative Physiol Ther 2006; 29(8): 637–642. doi: 10.1016/ j.jmpt.2006.08.003.
19. Frank C, Kobesova A, Kolar P. Dynamic neuromuscular stabilization and sports rehabilitation. Int J Sports Phys Ther 2013; 8(1): 62–73.
20. Kobesova A, Kolar P. Developmental kinesiology: three levels of motor control in the assessment and treatment of the motor system. J Bodyw Mov Ther 2014; 18(1): 23–33. doi: 10.1016/ j.jbmt.2013.04.002.
21. Safarova M, Kobesova A, Kolar P. Dynamic Neuromuscular Stablization and the role of central nervous system control in the pathogenesis of musculoskeletal disorders. In: Hutson M, Ward A (eds). Oxford Textbook of Musculoskeletal Medicine. 2nd ed. London: Oxford University Press 2016: 66–83.
22. Kobesova A, Safarova M, Kolar P. Dynamic neuromuscular stabilization: exercise in developmental positions to achieve spinal stability and functional joint centration. In: Hutson M, Ward A (eds). Oxford Textbook of Musculoskeletal Medicine. London: Oxford University Press 2015: 678–689. doi: 10.1093/ med/ 9780199674107.003.0061.
23. Kolar P, Safarova M. Dynamic Neuromuscular Stabilization. In: Clinical Rehabilitation. Prague: Rehabilitation Prague School 2013: 262–265.
24. Kolar P, Kobesova A, Valouchova P et al. Dynamic Neuromuscular Stabilization: treatment methods. In: Chaitow L (ed). Recognizing and treating breathing disorders: a multidisciplinary approach. Edinburgh: Churchill Livingstone 2014: 163–167. doi: 10.1016/ B978-0-7020-4980-4.00015-0.
25. Tsang S, Royse C, Terkawi AS. Guidelines for developing, translating, and validating a questionnaire in perioperative and pain medicine. Saudi J Anaesth 2017; 11 (Suppl 1): S80–S89. doi: 10.4103/ sja.SJA_203_17.
26. Geisinger KF. Cross-cultural normative assessment: translation and adaptation issues influencing the normative interpretation of assessment instruments. Psychol Assess 1994; 6(4): 304–312. doi: 10.1037/ 1040-3590.6.4.304.
27. Gulgin H, Hoogenboom B. The functional movement screening (fms)TM: an inter-rater reliability study between raters of varied experience. Int J Sports Phys Ther 2014; 9(1): 14–20.
28. Garcia AN, Costa LDCM, de Souza FS et al. Reliability of the mechanical diagnosis and therapy system in patients with spinal pain: a systematic review. J Orthop Sports Phys Ther 2018; 48(12): 923–933. doi: 10.2519/ jospt.2018. 7876.
29. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15(2): 155–163. doi: 10.1016/ j.jcm.2016.02.012.
30. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Physical Ther 2005; 85(3): 257–268. doi: 10.1093/ ptj/ 85.3.257.
31. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 2005; 19(1): 231–240. doi: 10.1519/ 15184.1.
32. Miyamori T, Nagao M, Shimasaki Y et al. Reliability assessment of the functional movement screen for predicting injury risk in Japanese college soccer players. J Phys Ther Sci 2020; 32(12): 850–855. doi: 10.1589/ jpts.32.850.
33. Harper BA, Glass SM et al. Item-level and composite-level interrater reliability of Functional Movement ScreenTM scores following condensed training in novice raters. Int J Sports Phys Ther 2021; 16(4): 1016–1024. doi: 10.26603/ 001c.25793.
34. Leeder JE, Horsley IG, Herrington LC. The inter-rater reliability of the Functional Movement Screen within an athletic population using untrained raters. J Strength Cond Res 2016; 30(9): 2591–2599. doi: 10.1519/ JSC.0b013e3182a1ff1d.
35. Smith CA, Chimera NJ, Wright NJ et al. Interrater and intrarater reliability of the functional movement screen. J Strength Cond Res 2013; 27(4): 982–987. doi: 10.1519/ JSC.0b0 13e3182606df2.
36. Minick KI, Kiesel KB, Burton L et al. Interrater reliability of the functional movement screen. J Strength Cond Res 2010; 24(2): 479–486. doi: 10.1519/ JSC.0b013e3181c09c04.
37. Gribble PA, Brigle J, Pietrosimone BG et al. Intrarater reliability of the functional movement screen. J Strength Cond Res 2013; 27(4): 978–981. doi: 10.1519/ JSC.0b013e31825c32a8.
38. Dolbeer J, Mason J, Morris J et al. Inter-rater reliability of the Selective Functional Movement Assessment (SFMA) by SFMA certified physical therapists with similar clinical and rating experience. Int J Sports Phys Ther 2017; 12(5): 52–763.
39. Glaws KR, Juneau CM, Becker LC et al. Intra- and inter-rater reliability of the selective functional movement assessment (SFMA). Int J Sports Phys Ther 2014; 9(2): 195–207.
40. Razmjou H, Kramer JF, Yamada R. Intertester reliability of the McKenzie evaluation in assessing patients with mechanical low back pain. J Orthop Sports Phys Ther 2000; 30(7): 368–389. doi: 10.2519/ jospt.2000.30.7.368.
41. Clare HA, Adams R, Maher CG. Reliability of McKenzie classification of patients with cervical or lumbar pain. J Manipulative Physiol Ther 2005; 28(2): 122–127. doi: 10.1016/ j.jmpt.2005.01.003.
42. Riddle DL, Rothstein JM. Intertester reli- ability of McKenzie’s classifications of the syndrome types present in patients with low back pain. Spine 1993; 18(10): 1333–1344. doi: 10.1097/ 00007632-199308000-00013.
43. Werneke MW, Deutscher D, Hart DL et al. McKenzie lumbar classification: inter-rater agreement by physical therapists with different levels of formal McKenzie postgraduate training. Spine 2014; 39(3): E182–E190. doi: 10.1097/ BRS.000 0000000000117.
44. Chan M, Dyck M, Thevasagayam G et al. Inter-rater reliability of the McKenzie method of mechanical diagnosis and therapy for the provisional classification of low back pain in adolescents and young adults. J Man Manip Ther 2021; 29(4): 255–261. doi: 10.1080/ 10669 817.2021.1874189.
45. Abady AH, Rosedale R, Overend TJ et al. Inter-examiner reliability of diplomats in the mechanical diagnosis and therapy system in assessing patients with shoulder pain. J Man Manip Ther 2014; 22(4): 199–205. doi: 10.1179/ 2042618614Y.0000000068.
46. May S, Ross J. The McKenzie classification system in the extremities: a reliability study using McKenzie assessment forms and experienced clinicians. J Manipulative Physiol Ther 2009; 32(7): 556–563. doi: 10.1016/ j.jmpt.2009.08.007.
47. Takasaki H. Agreement of mechanical diagnosis and therapy classification in people with extremity conditions. Phys Ther 2016; 96(10): 1525–1532. doi: 10.2522/ ptj.20150 640.
48. Jacisko J, Stribrny M, Novak J et al. Correlation between palpatory assessment and pressure sensors in response to postural trunk tests. Isokinet Exerc Sci 2021; 29(3): 299–308. doi: 10.3233/ IES-205238.
49. Novak J, Jacisko J, Busch A et al. Intra-abdominal pressure correlates with abdominal wall tension during clinical evaluation tests. Clin Biomech 2021; 88: 105426. doi: 10.1016/ j.clinbiomech.2021.105426.
50. Cha YJ, Lee JJ, Kim DH et al. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability. Technol Health Care 2017; 25(5): 981–988. doi: 10.3233/ THC-170929.
51. Melzack R. The short-form McGill pain questionnaire. Pain 1987; 30(2): 191–197. doi: 10.1016/ 0304-3959(87)91074-8.
52. Cholewicki J, Juluru K, McGill SM. Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 1999; 32(1): 13–17. doi: 10.1016/ S0021-9290(98)00129-8.
53. Cholewicki J, Juluru K, Radebold A et al. Lumbar spine stability can be augmented with an abdominal belt and/ or increased intra-abdominal pressure. Eur Spine J 1999; 8(5): 388–395. doi: 10.1007/ s005860050192.
54. Hodges PW, Eriksson AEM, Shirley D et al. Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech 2005; 38(9): 1873–1880. doi: 10.1016/ j.jbiomech.2004.08.016.
55. Stokes IAF, Gardner-Morse MG, Henry SM. Intra-abdominal pressure and abdominal wall muscular function: spinal unloading mechanism. Clin Biomech 2010; 25(9): 859–866. doi: 10.1016/ j.clinbiomech.2010.06.018.
56. Novak J, Jacisko J, Stverakova Snajdrova T et al. The significance of intra-abdominal pressure on postural stabilization: a low back pain case report. SJSS 2022; 7(2): 3–18. doi: 10.24040/ sjss. 2021.7.2.3-18.
57. Park I, Park C, Kim K et al. The effects of dynamic neuromuscular stability exercise on the scoliosis and pain control in the youth baseball players. J Mech Med Biol 2021; 21(9): 2140030. doi: 10.1142/ S0219519421400303.
58. Novak J, Busch A, Kolar P et al. Postural and respiratory function of the abdominal muscles: a pilot study to measure abdominal wall activity using belt sensors. Isokinet Exerc Sci 2021; 29(2): 1–10. doi: 10.3233/ IES-203212.
59. Cook G, Burton L, Hoogenboom BJ. Functional movement screening: the use of fundamental movements as an assessment of function – part 1. Int J Sports Phys Ther 2014; 9(3): 396–409.
60. Newton F, McCall A, Ryan D et al. Functional Movement Screen (FMSTM) score does not predict injury in English Premier League youth academy football players. Sci Med Football 2017; 1(2): 102–106. doi: 10.1080/ 24733938.2017.1283436.
61. Chao W-C, Shih J-C, Chen K-C et al. The effect of functional movement training after anterior cruciate ligament reconstruction: a randomized controlled trial. J Sport Rehabil 2018; 27(6): 541–545. doi: 10.1123/ jsr.2017-0022.
62. Tinková M, Kasík J. Mechanická diagnostika a terapie – výhody léčby dle McKenzieho. Rehabil Fyz Lék 2012; 19(2): 65–70.
Doručeno/ Submitted: 17. 9. 2023
Přijato/ Accepted: 6. 12. 2023
Korespondenční autor:
prof. MU Dr. Alena Kobesová, Ph.D.
Klinika rehabilitace a TVL 2. LF UK a FN Motol
V Úvalu 84
150 06 Praha 5
alenamudr@me.com
Labels
Physiotherapist, university degree Rehabilitation Sports medicineArticle was published in
Rehabilitation and Physical Medicine
2024 Issue 1
Most read in this issue
- Application of the evaluation sheet according to the Dynamic Neuromuscular Stabilization in clinical practice
- Iliotibial band syndrome
- Screening function of the pelvic floor muscles and prevalence of dysmenorrhea in women
- Specifics of physical therapy for children with osteogenesis imperfecta