Historical development of motor control theories – from hierarchical theory to dynamic system
Authors:
Vařeka I.
Authors‘ workplace:
Lékařská fakulta v Hradci Králové, Univerzita Karlova
; Fakulta tělesné kultury, Univerzita Palackého v Olomouci
; Rehabilitační klinika, Fakultní nemocnice Hradec Králové
Published in:
Rehabil. fyz. Lék., 28, 2021, No. 2, pp. 52-60.
Category:
Review Article
doi:
https://doi.org/10.48095/ccrhfl202152
Overview
Motor control theories can be divided into four main types, some of which follow each other in part and others arose as a negation of the previous ones. The oldest comprehensive theory is the hierarchical theory from the second half of the 19th century, the main representative of which is John H. Jackson. At the turn of the 19th and 20th centuries, it has been followed by the reflex theory, whose main representatives were William James, Ivan P. Pavlov and especially Charles S. Sherrington. Thomas G. Brown contributed greatly to overcoming this theory with his discovery of central pattern generators. In opposition to the reflex theory, Nikolai A. Bernstein developed his original concept in the 1930s and 1940s, sometimes referred to as the systems theory. In the second half of the 20th century, it has been partly followed by the theory of motor programs, the main authors of which were Karl S. Lashley, Jack A. Adams and especially Richard A. Schmidt. Bernstein‘s work has also been followed by the last but not least important concept of motor control, namely the theory of dynamical systems, the main authors of which are Stuart A. Kauffman, J. A. Scott Kelso, Michael T. Turvey and Ester A. Thelen.
Keywords:
motor control theories – motor learning – motor development
Sources
1. Spencer H. The principles of psychology (1855). [online]. Available from: https://oll.libertyfund.org/title/spencer-the-principles-of-psychology-1855.
2. Wiest G. Neural and mental hierarchies. Front Psychol 2012; 26: 516. doi: 10.3389/fpsyg.2012.00516.
3. Franz EA, Gillett G. John Hughlings Jackson’s evolutionary neurology: a unifying framework for cognitive neuroscience. Brain 2011; 134(10): 3114–3120. doi: 10.1093/brain/awr218.
4. York GK, Steinberg DA An introduction to the life and work of John Hughlings Jackson. Med Hist Suppl 2006; 26: 3–157.
5. Lashley KS. The mechanism of vision: XV. preliminary studies of the rat’s capacity for detail vision. J Gen Psychol 1938; 18(1): 123–193. doi: 10.1080/00221309.1938.9709894.
6. Hebb DO. The organization of behavior: a neuropsychological theory. New York: John Wiley and Sons 1949. doi: 10.1002/sce.37303405110.
7. Latash ML, Zatsiorsky VM. Biomechanics and motor control defining central concepts. Amsterdam: Elseviere 2016.
8. Bradley RH, Casey PH. Family environment and behavioral development of low-birthweight children. Dev Med Child Neurol 1992; 34(9): 822–826. doi: 10.1111/j.1469-8749.1992.tb11520.x.
9. Thelen E, Smith LB. Dynamic systems theories. In: Damon W, Lerner RM (Eds). Handbook of child psychology. Vol. 1: Theoretical models of human development. 6th ed. pp. 258–312. [online]. Available from: https://cogdev.sitehost.iu.edu/labwork/handbook.pdf.
10. Thelen E. Motor development. A new synthesis. Am Psychol 1995; 50(2): 79–95. doi: 10.1037//0003-066x.50.2.79.
11. Beranová B, Kováčíková V. Využití neuroplasticity v terapii pohybových poruch. Rehabilitácia 1998; 31(2): 82–91.
12. Kolář P. Senzimotorická podstata posturálních funkcí jako základ pro nové přístupy ve fyzioterapii. Rehabil Fyz Lék 1998; 5(4): 142–147.
13. Kolář P. Systematizace svalových dysbalancí z pohledu vývojové kineziologie. Rehabil Fyz Lék 2001; 8(4): 152–164.
14. Kolář P. Vývojová kineziologie v diagnostice a terapii manuální medicíny. Eurorehab 1997; 7(1–2): 152–155.
15. Kolář P. Vývojová kineziologie. In: Kraus J. et al. Dětská mozková obrna. Praha: Grada 2005: 93–107.
16. Kolář P. Význam vývojové kineziologie pro manuální medicínu. Rehabil Fyz Lék 1996; 3(4): 152–155.
17. Kováčíková V. Postavení Vojtovy metody ve fyzioterapii hybných poruch (nejen dětských neurologických pacientů). Rehabilitácia 1998; 31(2): 82–91.
18. Lesný I et al. Dětská neurologie. Praha: Avicenum 1980.
19. Vojta V., Peters A. Vojtův princip. Praha: Grada 1995.
20. Vojta V. Mozkové hybné poruchy v kojeneckém věku: včasná diagnóza a terapie. Praha: Grada (Avicenum) 1993.
21. Clarac F. The history of reflexes. Part 1: from Descartes to Pavlov. IBRO Hist Neurosci 2005. [online]. Available from: http://ibro.org/wp-content/uploads/2018/07/The-History-of-Reflexes-Part-1.pdf.
22. King LS. Robert Whytt, the soul, and medi-cine. JAMA 1970; 211(2): 303. doi: 10.1001/jama.1970.03170020067025.
23. Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev 2008; 57(1): 13–21. doi: 10.1016/j.brainresrev.2007.07.015.
24. Latash ML. Evolution of motor control: from reflexes and motor programs to the equilibrium-point hypothesis. J Hum Kinet 2008; 19(19): 3–24. doi: 10.2478/v10078-008-0001-2.
25. Kipnis N. Luigi Galvani and the debate on animal electricity, 1791–1800. Ann Sci 1987; 44(2): 107–142. doi: 10.1080/00033798700200151.
26. Cambiaghi M, Parent A. From Aldini’s galvanization of human bodies to the Modern Prometheus. Medicina Historica 2018; 2(1): 27–37.
27. Berkowitz C. Defining a discovery: priority and methodological controversy in early nineteenth-century anatomy. Notes Rec R Soc Lond 2014; 68(4): 357–372. doi: 10.1098/rsnr.2014.0028.
28. Leff AP. Thomas Laycock and the romantic genesis of the cerebral reflex. ACNR 2002; 3(1): 26–27.
29. Manuel D. Marshall Hall, F.R.S. (1790–1857): a conspectus of his life and work. Notes Rec 1980; 35(2): 135–166. doi: 10.1098/rsnr.1980.0015.
30. Klein A. The curious case of the decapitated frog: on experiment and philosophy. Brit J Hist Philos 2018; 26(5): 890–917. doi: 10.1080/09608788.2017.1378866.
31. Smith R. The muscular sense in Russia: I. M. Sechenov and materialist realism. J Hist Behav Sci 2019; 55(1): 5–20. doi: 10.1002/jhbs.21943.
32. Stuart DG, Schaefer AT, Massion J et al. Pioneers in CNS inhibition: 1. Ivan M. Sechenov, the first to clearly demonstrate inhibition arising in the brain. Brain Res 2014; 1548: 20–48. doi: 10.1016/j.brainres.2013.12.006.
33. James W. The Principles of psychology. New York: Henry Holt and Company 1890.
34. Sherrington CS. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 1910; 40(1–2): 28–121. doi: 10.1113/jphysiol.1910.sp001362.
35. Sherrington CS. The integrative actions of the nervous system. New Haven: Yale University Press, London, Humphrey Milford, Oxford University Press 1906. [online]. Available from: https://liberationchiropractic.com/wp-content/uploads/research/1906Sherrington-IntegrativeAction.pdf.
36. Jarius S, Wildemann B. Pavlov’s reflex before Pavlov: early accounts from the English, French and German classic literature. Eur Neurol 2017; 77(5–6): 322–326. doi: 10.1159/000475811.
37. Clark RE. The classical origins of Pavlov’s conditioning. Integr Physiol Behav Sci 2004; 9(4): 279–294. doi: 10.1007/BF02734167.
38. Corr PJ, Perkins AM. The role of theory in the psychophysiology of personality: from Ivan Pavlov to Jeffrey Gray. Int J Psychophysiol 2006; 62(3): 367–376. doi: 10.1016/j.ijpsycho.2006.01.005.
39. Linhart J, Janda J, Linhartová V. Pavlovovo učení o typech vyšší nervové činnosti s hlediska potřeb pedagogiky. Pedagogika 1954; 4(8): 611–624.
40. Windholz G. Pavlov’s conceptualization of the dynamic stereotype in the theory of higher nervous activity. Am J Psychol 1996; 109(2): 287–295. [online]. Available from: https://www.jstor.org/stable/1423277.
41. Schneider SM, Morris EK. A history of the term radical behaviorism: from Watson to Skinner. Behav Anal 1987; 10(1): 27–39. doi: 10.1007/BF03392404.
42. Brown TG. On the nature of the fundamental activity of thenervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 1914; 48(1): 18–46. doi: 10.1113/jphysiol.1914.sp001646.
43. Brown TG. Studies in the physiology of the nervous system IX.: Reflex terminal phenomena-rebound-rhythmic rebound and movements of progression. Q J Exp Physiol 1911; 4(4): 331–397. doi: 10.1113/expphysiol.1911.sp000104.
44. Brown TG. The intrinsic factors in the act of progression in mammal. Proc R Soc B 1911; 84(572): 308–319. doi: 10.1098/rspb.1911.0077.
45. Guertin PA. The mammalian central pattern generator for locomotion. Brain Res Rev 2009; 62(1): 45–56. doi: 10.1016/j.brainresrev.2009.08.002.
46. Stuart DG, Hultborn H. Thomas Graham Brown (1882–1965), Anders Lundberg (1920–) and the neural control of stepping. Brain Res Rev 2008; 59(1): 74–95. doi: 10.1016/j.brainresrev.2008.06.001.
47. Wilson DM, Wyman RJ. Motor output patterns during random and rhythmic stimulation of loctus thoracic ganglia. Biophys J 1965; 5(2): 121–143.
48. Wilson DM. The central nervous control of flight in a locust. J Exp Biol 1961; 38(2): 471–490.
49. Ballion B, Morin D, Viala D. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 2001; 14(10): 1727–1738. doi: 10.1046/j.0953-816x.2001.01794.x.
50. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 2003; 4(7): 573–586. doi: 10.1038/nrn1137.
51. Kullander K. Genetics moving to neuronal networks. Trends Neurosci 2005; 28(5): 239–247. doi: 10.1016/j.tins.2005.03.001.
52. Rossignol S, Bouyer L. Adaptive mechanisms of spinal locomotion in cats. Integr Comp Biol 2004; 44(1): 71–79. doi: 10.1093/icb/44.1.71.
53. Molinari M. Plasticity properties of CPG circuits in humans: impact on gait recovery. Brain Res Bull 2009; 78(1): 22–25. doi: 10.1016/j.brainresbull.2008.02.030.
54. Ivanenko YP, Poppele RE, Lacquaniti F. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res Bull 2009; 78(1): 13–21. doi: 10.1016/j.brainresbull.2008.03.018.
55. Minassian K, Hofstoetter US, Dzeladini F et al. The human central pattern generator for locomotion: does it exist and contribute to walking. Neuroscientist 2017; 23(6): 649–663. doi: 10.1177/1073858417699790.
56. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther 2000; 80(7): 688–700.
57. Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007; 10(8): 1055–1062. doi: 10.1038/nn1930.
58. Marder E, Calabrese RL. Principles of rhythmic motor pattern generation. Physiol Rev 1996; 76(3): 687–717. doi: 10.1152/physrev.1996.76.3.687.
59. Berthouze L, Lungarella M. Motor skill acquisition under environmental perturbations: on the necessity of alternate freezing and freeing of degrees of freedom. Adapt Behav 2004; 12(1): 47–64. doi: 10.1177/105971230401200104.
60. Guimarães AN, Ugrinowitsch H, Dascal JB et al. Freezing degrees of freedom during motor learning: a systematic review. Motor Control 2020; 24(3): 1–15. doi: 10.1123/mc.2019-0060.
61. Vereijken B, van Emmerik RE, Whiting H et al. Free(z)ing degrees of freedom in skill acquisition. J. Motor Behav 1992; 24(1): 133–142. doi: 10.1080/00222895.1992.9941608.
62. Bernshteĭn NA. The co-ordination and regulation of movement. Oxford: Pergamon Press 1967.
63. Gurfinkel VS, Cordo PJ. The scientific legacy of Nikolai Bernstein. In: Latash ML (Ed). Progress in motor control. Volume one. Bernstein’s traditions in movement studies. Chapaign: Human Kinetics 1998: 1–20.
64. Veresov N. Nikolai Bernstein: the physiology of activeness and the psychology of action. J Russ East Europ Psychol 2006; 44(2): 3–11. doi: 10.2753/RPO1061-0405440200.
65. Latash ML, Levin MF, Scholz JP et al. Motor control theories and their applications. Medicina (Kaunas) 2010; 46(6): 382–392.
66. Latash ML. Motor synergies and the equilibrium-point hypothesis. Motor Control 2010; 14(3): 294–322. doi: 10.1123/mcj.14.3.294.
67. Morris ME, Summers JJ, Matyas TA et al. Current status of the motor program. Phys Ther 1994; 74(8): 738–748. doi: 10.1093/ptj/74.8.738.
68. Summers JJ, Anson JG. Current status of the motor program: revisited. Hum Mov Sci 2009; 28(5): 566–577. doi: 10.1016/j.humov.2009.01.002.
69. Draaisma D. Metafory paměti. Praha: Mladá fronta 2003.
70. Brown RE, Milner PM. The legacy of Donald O. Hebb. More than the Hebb synapse. Nat Rev Neurosci 2003; 4(12): 1013–1019. doi: 10.1038/nrn1257.
71. Brown RE. Donald O. Hebb and the Organization of Behavior: 17 years in the writing. Mol Brain 2020; 13(1): 55. doi: 10.1186/s13041-020-00567-8.
72. Langille JJ, Brown RE. The synaptic theory of memory: a historical survey and reconciliation of recent opposition. Front Syst Neurosci 2018; 12: 52. doi: 10.3389/fnsys.2018.00052.
73. Wickens J, Hyland B, Anson G. Cortical cell assemblies: a possible mechanism for motor programs. J Motor Behav 1994; 26(2): 66–82. doi: 10.1080/00222895.1994.9941663.
74. Lashley KS. The accuracy of movement in the absence of excitation from the moving organ. Am J Physiol 1917; 43(2): 169–194. doi: 10.1152/ajplegacy.1917.43.2.169.
75. Rosenbaum DA, Cohen RG, Jax SA et al. The problem of serial order in behavior: Lashley’s legacy. Hum Mov Sci 2007; 26(4): 525–554. doi: 10.1016/j.humov.2007.04.001.
76. Adams JA. A closed-loop theory of motor learning. J Mot Behav 1971; 3(2): 111–149. doi: 10.1080/00222895.1971.10734898.
77. Schmidt RA. Jack Adams, a giant of motor behavior, has died. J Motor Behav 2010; 43(1): 83–84. doi: 10.1080/00222895.2010.549004.
78. Shumway-Cook A, Woollacott MH. Motor control: theory and practical application. 2nd ed. Maryland: Lippincott Williams and Wilkins 2001.
79. Schmidt RA. Motor schema theory after 27 years: reflections and implications for a new theory. Res Q Exer Sport 2003; 74(4): 366–375. doi: 10.1080/02701367.2003.10609106.
80. Schmidt RA. A schema theory of discrete motor skill learning. Psych Rev 1975; 82(4): 225–260. doi: 10.1037/h0076770.
81. Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press 1993.
82. Smith LB, Thelen E. Development as a dynamic system. Trends Cogn Sci 2003; 7(8): 343–348. doi: 10.1016/s1364-6613(03)00156-6.
83. Smith LB, Thelen E. A dynamic systems approach to development. MIT Press 1993.
Labels
Physiotherapist, university degree Rehabilitation Sports medicineArticle was published in
Rehabilitation and Physical Medicine
2021 Issue 2
Most read in this issue
- Historical development of motor control theories – from hierarchical theory to dynamic system
- The effect of manipulation therapy on cervicocranial syndrome
- Influence of footbike riding on the locomotor system of younger school children
- Comparison of muscular relaxation in middle-aged and older athletes