#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Endovenous laser ablation of saphenous veins – favorable clinical results confirm theoretical advantages of the 1940nm diode laser


Authors: V. Fabián 1;  J. Honěk 2,3;  V. Horváth 3;  M. Horváth 2,3;  M. Šlais 1;  M. Vítovec 3;  O. Stehno 3;  P. Šedivý 3;  P. Šebesta 3;  J. Weiss 3;  T. Honěk 3
Authors‘ workplace: Fakulta elektrotechnická, České vysoké učení technické v Praze 1;  Kardiologická klinika, Fakultní nemocnice v Motole a 2. lékařská fakulta Univerzity Karlovy, Praha 2;  Avicena-chirurgie s. r. o., Nemocnice Malvazinky, Praha 3
Published in: Rozhl. Chir., 2022, roč. 101, č. 8, s. 395-400.
Category: Original articles
doi: https://doi.org/10.33699/PIS.2022.101.8.395–400

Overview

Introduction: Endovenous laser ablation (EVLA) is a recognized alternative to surgical treatment of varicose veins, although an optimal laser generator and its settings still remain a matter of debate. The aim of our study was to correlate clinical results with the theoretical advantage of the 1940nm diode laser characterized by high absorption of heat in a thin layer of coagulated tissue.

Methods: From 1/2010 to 12/2021 EVLA was performed in a total of 3529 consecutive patients with varicose veins and ultrasonographically documented superficial venous reflux of lower extremities. Three types of laser were used successively with the wavelengths of 1064 nm, 1470 nm and 1940 nm, respectively. All patients were prospectively enrolled in our registry. An early postoperative follow−up visit was scheduled including an assessment of venous closure; additional visits were performed only in case of complications.

Results: The success of venous closure did not differ (p=0.054) between the three laser types and was over 98%. The catheter−based method made it possible to perform multiple ablations in one procedure − the trend was 1.08, 1.31 and 1.62. In 2021 the number of ablations per patient with the laser DL Tethys 1940 nm was 1.79. With this laser it was possible to reduce the total energy applied to one half (8 W, 50−80 J/cm). The postoperative course of patients treated using the 1940nm laser was smoother – no other but the early follow−up visit was needed in 95.6% cases (p<0.001).

Conclusion: This study showed that all three types of the near−infrared lasers had an equal closure efficacy. With the 1940nm DL it was possible to decrease the energy to one half. Despite multiple ablations performed in one procedure the postoperative course of the patients was smoother.

Keywords:

chronic venous insufficiency – endovenous laser ablation – diode laser 1940 nm


Sources

1. Piazza G. Varicose veins. Circulation 2014;130:582−587. doi:10.1161/CIRCULATIONAHA. 113.008331.

2. Evans CJ, Fowkes FG, Ruckley CV, et al. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health 1999;53:149−153. doi:10.1136/ jech.53.3.149.

3. Tassie E, Scotland G, Brittenden J, et al. Cost−effectiveness of ultrasound− guided foam sclerotherapy, endovenous laser ablation or surgery as treatment for primary varicose veins from the randomized CLASS trial. Br J Surg. 2014;101:1532−1540. doi:10.1002/ bjs.9595.

4. Critchley G, Handa A, Maw A, et al. Complications of varicose vein surgery. Ann R Coll Surg Engl. 1997;79:105−110.

5. Siribumrungwong B, Noorit P, Wilasrusmee C, et al. A systematic review and meta−analysis of randomised controlled trials comparing endovenous ablation and surgical intervention in patients with varicose vein. Eur J Vasc Endovasc Surg. 2012;44:214−223. doi:10.1016/j. ejvs.2012.05.017.

6. Miller GV, Lewis WG, Sainsbury JR, et al. Morbidity of varicose vein surgery: auditing the benefit of changing clinical practice. Ann R Coll Surg Engl. 1996;78,345−349.

7. Bootun R, Lane TR, Davies AH. A comparison of thermal and non−thermal ablation. Reviews in Vascular Medicine 2016;4:1−8. doi:10.1016/j. rvm.2016.02.001.

8. Elias S. Minimally invasive vein surgery: latest options for vein disease. Mt Sinai J Med. 2010;77:270−278. doi:10.1002/ msj.20186.

9. Brittenden J, Cotton SC, Elders A, et al. A randomized trial comparing treatments for varicose veins. N Engl J Med. 2014;371:1218−1227. doi:10.1056/NEJMoa1400781.

10. Morrison N, Gibson K, McEnroe S, et al. Randomized trial comparing cyanoacrylate embolization and radiofrequency ablation for incompetent great saphenous veins (VeClose). J Vasc Surg. 2015;61:985−994. doi:10.1016/j. jvs.2014.11.071.

11. Rasmussen LH, Bjoern L, Lawaetz M, et al. Randomised clinical trial comparing endovenous laser ablation with stripping of the great saphenous vein: clinical outcome and recurrence after 2 years. Eur J Vasc Endovasc Surg. 2010;39:630−635. doi:10.1016/j.ejvs.2009.11.040.

12. Darwood RJ, Theivacumar N, Dellagrammaticas D, et al. Randomized clinical trial comparing endovenous laser ablation with surgery for the treatment of primary great saphenous varicose veins. Br J Surg. 2008;95:294−301. doi:10.1002/ bjs.6101.

13. Carradice D, Mekako AI, Mazari FAK, et al. Randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins. Br J Surg. 2011;98:501−510. doi:10.1002/bjs.7394.

14. Christenson JT, Gueddi S, Gemayel G, et al. Prospective randomized trial comparing endovenous laser ablation and surgery for treatment of primary great saphenous varicose veins with a 2−year follow− up. J Vasc Surg. 2010;52:1234−1241. doi:10.1016/j.jvs.2010.06.104.

15. Rasmussen LH, Lawaetz M, Bjoern L, et al. Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg. 2011;98:1079−1087. doi:10.1002/bjs.7555.

16. Biemans AA, Kockaert M, Akkersdijk GP, et al. Comparing endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg. 2013;58:727−734. doi:10.1016/j.jvs.2012.12.074.

17. Carradice D, Mekako AI, Mazari FA, et al. Clinical and technical outcomes from a randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins. Br J Surg. 2011;98:1117−1123. doi:10.1002/bjs.7615.

18. Carroll C, Hummel S, Leaviss J, et al. Clinical effectiveness and cost-effectiveness of minimally invasive techniques to manage varicose veins: a systematic review and economic evaluation. Health Technol Assess 2013;17:1−141. doi:10.3310/hta17480.

19. Gloviczki P, Gloviczki ML. Guidelines for the management of varicose veins. Phlebology 2012;27:2−9. doi:10.1258/ phleb.2012.012s28.

20. Niemz MH. Laser-tissue interactions, fundamentals and applications. In: Biological and medical physics, biomedical engineering. 3rd ed. New York, Springer Berlin Heidelberg 2007.

21. Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl Opt. 1973;12(3):555−563. doi:10.1364/AO.12.000555.

22. Roggan A, Friebel M, Dörschel K, et al. Optical properties of circulating human blood in the wavelength range 400−2500 nm. J Biomed Opt. 1999;4(1):36−46. doi. org/10.1117/1.429919.

23. Bosschaart N, Edelman G, Aalders MC, et al. A literature review and a novel theoretical approach on the optical properties of whole blood. Lasers Med Sci. 2014;29(2):453−479. doi:10.1007/ s10103−013−1446−7.

24. Malskat WS, Poluektova AA, van der Geld CW, et al. Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate. Lasers Med Sci. 2014;29(2):393−403. doi:10.1007/s10103−013−1480−5.

25. Viarengo LM, Potério−Filho J, Potério GM, et al. Endovenous laser treatment for varicose veins in patients with active ulcers: measurement of intravenous and perivenous temperatures during the procedure. Dermatol Surg. 2007;33(10):1234−1242, discussion 1241−1242. doi:10.1111/j.1524- 725.2007.33259.x.

26. van den Bos RR, van Ruijven PW, van der Geld CW, et al. Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles. Eur J Vasc Endovasc Surg. 2012;44(1):77−81. doi:10.1016/j. ejvs.2012.04.017.

27. Honěk T, Horváth M, Horváth V, et al. Catheter−based endovenous laser ablation of saphenous veins in the treatment of symptomatic venous reflux: Early results. Cor Vasa 2017;59:525−529. doi:10.1016/j.crvasa.2016.11.002.

28. Honěk T, Horváth M, Horváth V, et al. Catheter laser ablation of superficial veins of the lower extremities in the symptomatic treatment of venous reflux− comparison of the immediate results of two types of laser generators. Rozhl Chir. 2019;98:248−251.

29. Honěk T, Honěk J, Horváth V, et al. Endovenous laser ablation of saphenous vcein−mid−term results confirm permanent closure and possibility to treat more lesions in one procedure. Rozhl Chir. 2020;99:299−303.

30. Galanopoulos G, Lambidis C. Minimally invasive treatment of varicose veins: Endovenous laser ablation (EVLA). Int J Surg. 2012;12:134−139. doi:10.1016/j. ijsu.2012.02.013.

31. van den Bos RR, Kockaert MA, Neumann HA, et al. Technical review of endovenous laser therapy for varicose veins. Eur J Vasc Endovasc Surg. 2008;35:88−95. doi:10.1016/j.ejvs.2007.08.005.

32. Proebstle TM, Moehler T, Herdemann S. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J Vasc Surg. 2006;44:834−839. https://doi. org/10.1016/j.jvs.2006.05.052.

33. Theivacumar NS, Dellagrammaticas D, Beale RJ, et al. Factors influencing the effectiveness of endovenous laser ablation (EVLA) in the treatment of great saphenous vein reflux. Eur J Vasc Endovasc Surg. 2008;35:119−123. doi:10.1016/j. ejvs.2007.08.010.

34. Puggioni A, Kalra M, Carmo M, et al. Endovenous laser therapy and radiofrequency ablation of the great saphenous vein: analysis of early efficacy and complications. J Vasc Surg. 2005;42:488−493. doi:10.1016/j.jvs.2005.05.014.

35. Chaar CI, Hirsch SA, Cwenar MT, et al. Expanding the role of endovenous laser therapy: results in large diameter saphenous, small saphenous, and anterior accessory veins. Ann Vasc Surg. 2011;25:656−661. doi:10.1016/j. avsg.2011.02.031.

36. Marsh P, Price BA, Holdstock J, et al. Deep vein thrombosis (DVT) after venous thermoablation techniques: Rates of endovenous heat−induced thrombosis (EHIT) and classical DVT after radiofrequency and endovenous laser ablation in a single centre. Eur J Vasc Endovasc Surg. 2010;40:521−527. doi:10.1016/j. ejvs.2010.05.011.

37. Truong VG, Tran VN, Hwang J, et al. Effect of spatial light distribution on the thermal response of vascular tissue. Biomedimedical Optics Express 2018;9(7):3037−3048. doi:10.1364/BOE.9.003037.

Labels
Surgery Orthopaedics Trauma surgery
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#