When a surgical patient needs parenteral nutrition
Authors:
E. Havel
Authors‘ workplace:
Katedra chirurgie LF UK v Hradci Králové, vedoucí: Doc. MUDr. RNDr. M. Kaška, PhD.
; Chirurgická klinika FN Hradec Králové, přednosta: Prof. MUDr. A. Ferko, CSc.
Published in:
Rozhl. Chir., 2013, roč. 92, č. 7, s. 368-372.
Category:
Review
Práce je podpořena programem PRVOUK P37/04
Overview
Introduction:
Some recent studies suggest that the blanket use of parenteral nutrition may be harmful in the event of short-term starvation due to acute illness. Utilization of endogenous substrate resources which are mobilized anyway due to acute illness or operation allows the organism to survive and recover from acute damage without nutritional support. Modern, less invasive procedures in surgery, good preoperative nutritional status and early recovery of food intake after surgery on the one hand and the side effects and risks of artificial nutrition on the other hand raise the question whether surgery in general still needs parenteral nutrition. Even on the basis of modern knowledge we cannot explain why, in standard administration of parenteral nutrition, there is a higher incidence of postoperative complications. Is parenteral nutrition directly toxic or useless, or are we just unable to avoid the side effects of improper application?
Methods:
In most cases, the body has protein and energy storage large enough to heal the wound and anastomosis. But the hypometabolic status of the starved organism requires more time for the healing process, and ubiquitous protein catabolism due to postoperative inflammation can exhaust the immune defences of the body. The importance of nutritional support and metabolic optimization is shifting to preoperative strengthening. Artificial feeding is used to stimulate protein synthesis which is necessary for healing on the one hand, and to replenish protein and energy reserves on the other. Protracted catabolism is a risk factor for prolonged immunosuppression and fatal loss of endogenous protein.
Conclusion:
Malnutrition is a significant cause of postoperative complications. In planned operations, artificial nutritional support is targeted at patients with low protein synthesis (persons with low food intake lasting several days), patients who are obviously malnourished, those with expected long starvation (5–7 days), and patients with high catabolism. Protein synthesis accelerates in a few days after nutritional support has been started. The nutritional indicators improve in a few weeks after nutrition has been initiated and the risk of postoperative complications due to malnutrition persists up to several months after surgery.
Keywords:
catabolism – surgical trauma – healing, anastomotic leak – parenteral nutrition
Sources
1. Satinský I. Nutriční intervence v chirurgii. Rozhl Chir 2009;88: 409–412.
2. Fielding LP, Stewart-Brown S, Blesovsky L, Kearney G. Anastomotic integrity after operations for large-bowel cancer: a multicentre study. Br Med J 1980;281:411–414.
3. Golub R, Golub RW, Cantu R Jr, Stein HD. A multivariate analysis of factors contributing to leakage of intestinal anastomoses. J Am Coll Surg 1997;184:364–372.
4. Alves A, Panis Y, Trancart D, Regimbeau JM, Pocard M, Valleur P. Factors associated with clinically significant anastomotic leakage after large bowel resection: multivariate analysis of 707 patients. World J Surg 2002;26:499–502.
5. Peeters KC, Tollenaar RA, Marijnen CA, Klein Kranenbarg E, Steup WH, Wiggers T, et al. Risk factors for anastomotic failure after total mesorectal excision of rectal cancer. Br J Surg 2005;92:211–216.
6. Kingham TP, Pachter HL. Colonic anastomotic leak: risk factors, diagnosis, and treatment. J Am Coll Surg 2009;208:269–278.
7. Posma LA, Bleichrodt RP, van Goor H, Hendriks T. Transient profound mesenteric ischemia strongly affects the strength of intestinal anastomoses in the rat. Dis Colon Rectum 2007;50: 1070–1079.
8. Posma LA, Bleichrodt RP, Lomme RM, de Man BM, van Goor H, Hendriks T. Early anastomotic repair in the rat intestine is affected by transient preoperative mesenteric ischemia. J Gastrointest Surg 2009;13:1099–1106.
9. Aksöyek S, Cinel I, Avlan D, Cinel L, Oztürk C, Gürbüz P, Nayci A, Oral U. Intestinal ischemic preconditioning protects the intestine and reduces bacterial translocation. Shock 2002;18: 476–480.
10. Cinel I, Avlan D, Cinel L, Polat G, Atici S, Mavioglu I, Serinol H, Aksoyek S, Oral U. Ischemic preconditioning reduces intestinal epithelial apoptosis in rats. Shock 2003;19:588–592.
11. Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischaemic preconditioning improves microvascular perfusion and oxygenation following reperfusion injury of the intestine. Br J Surg 2005;92: 1169–1176.
12. Marjanovic G, Jüttner E, zur Hausen A, Hopt Ut, Obermaier R. Ischemic preconditioning improves stability of intestinal anastomoses in rats. Int J Colorectal Dis 2009;24:975–981.
13. Holzner PA, Kulemann B, Kuesters S, Timme S, Hoeppner J, Hopt Ut, Marjanovic G. Impact of remote ischemic preconditioning on wound healing in small bowel anastomoses World J Gastroenterol 2011;17,10:1308–1316.
14. Kumar I, Staton CA, Cross SS, Reed MW, Brown NJ. Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. Br J Surg. 2009;96:1484–1491.
15. Deshaies I, Malka D, Soria JC, Massard C, Bahleda R, Elias D. Antiangiogenic agents and late anastomotic complications. J Surg Oncol 2010;101:180–183.
16. Marjanovic G, Hopt UT. Physiology of anastomotic healing. Chirurg 2011;82:41–47.
17. Pooli AH, Philips EH. Prevention of anastomotic leaks in bariatric surgery. Bariatric Times 2010;7,3:8–13.
18. Yoo JH, Shin JH, An MS, Hal TK, Kim KH, Bae KB, et al. Adipose-tissue-derived Stem Cells Enhance the Healing of Ischemic Colonic Anastomoses: An Experimental Study in Rats. J Korean Soc Coloproctol 2012;28,3:132–139.
19. Klein M. Postoperative non-steroidal anti-inflammatory drugs and colorectal anastomotic leakage. Dan Med J 2012;59,3: B4420,1–15.
20. Mayer J, Boldt J, Mengistu AM, Röhm D, Suttner S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, control trial. Critical Care 2010;14:R18.
21. Yuill KA, Richardson RA, Davidson HIM, Garden OJ, Parks RW. The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal Musile mass postoperatively – a randomised clinical trial. Clinical Nutrition 2005;24:32–37.
22. Brandao AM, Galvao da Silva N, Melo de Oliveira MV, Alves de Morais PH, Marques e Silva S, Batista de Sousa J, et al. Effects of abdominal sepsis in the healing of abdominal wall. Experimental study in rats. Acta Cirúrgica Brasileira 2011;26(Suppl. 2):38–44.
23. Belobradkova E, Havel E, Cerman J, Blazek M, Cahill E. Pyoderma gangrenosum: an uncommon cause of septic shock. ANZ J Surg 2010;80:573–574.
24. Fillinger MP, Rassias AJ, Futre PM, et al. Glucocorticoid Effects on the Inflammatory and Clinical Response to Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia 2002;16,2:163–169.
25. Slieker JC, Komen N, Mannaerts GH, et al. Long-term and perioperative corticosteroids in anastomotic leakage. A prospective study of 259 left-sided colorectal anastomoses. Arch Surg 2012;147,5:447–452.
26. Thorell A, Nygren J, Ljunqvist O. Insulin resistance: a marker of surgical stress.Curr Opin Clin Nutr Metab Care 1999;2:69–78.
27. Biolo G, Declan Fleming RY, Maggi SP, Nguyen TT, Herndon DN, Wolfe RR. Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients. J Clin Endocrinol Metab 2002;87:3378–3384.
28. Correia MI, CaiaffaWT, da Silva AL,Waitzberg DL. Risk factors for malnutrition in patients undergoing gastroenterological and hernia surgery: an analysis of 374 patients. Nutr Hosp 2001;16:59–64.
29. Rubenoff R, Kehajias J. The meaning and measurement of lean body mass. Nutr Rev 1991;49:163–175.
30. The veteran affairs total parenteral nutrition kooperative study group. Perioperative total parenteral nutrition in surgical patients, N Engl J Med 1991;325:525–532.
31. Bozzetti F, Gianotti L, Braga M, Di Carlo V, Mariani L. Postoperative complications in gastrointestinal cancer patients: the point role of the nutritional status and nutritional support. Clin Nutr 2007;26,6:698–709.
32. Caesar MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med 2011;365, 6:506–517.
33. Jie B. Jiang ZM, Nolan MT, Zhu SN, Yu K, Kondrup J. Impact of Preoperative nutritional supporton clinical outcome in abdominal surgical patients et nutrition risk. Nutrition 2012;28:1022–1027.
34. Jacobson S. Early postoperative complications in patients with Crohn’s disease given and not given preoperative total parenteral nutrition. Scandinavian Journal of Gastroenterology 2012;47: 170–177.
35. Clark MA, Plank LD, Hill GL. Wound healing associated with severe surgical illness. World Journal of Surgery 2000;24: 648–654.
36. Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduction the incidence of surgical-wound infection and shorten hospitalization: study of the wound infection and temperature group. N Engl J Med 1996;334:1209–1215.
37. Giger U, Büchler M, Farhadi J, et al. Preoperative immunonutrition supress perioperative inflammatory response in patiens with major abdominal surgery – a randomized controlled pilot study. Ann Surg Oncol 2007;14:2798–2806.
38. Gianotti L, Braga M, Nespoli L, Radaelli G, Beneduce A, Di Carlo V. A randomized controlled trial of preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology 2002;122:1763–1770.
39. Singer P, Anbar R, Cohen J, et al. The Tight Calorie Control Study (TICACOS): a prospective, randomized, controlled study of nutritional support in critically ill patients. Intensive Care Med 2009;37:601–609.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2013 Issue 7
Most read in this issue
- Laparoscopic resection of the sigmoid colon for the diverticular disease
- Diverticular disease of the large bowel – surgical treatment
- Diverticular disease of the large bowel – imaging methods
- The staple line in sleeve gastrectomy