#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cardiac amyloidosis in imaging methods – a view of cardiologist


Authors: Adéla Morávková;  Petr Povolný
Authors‘ workplace: Cardiocentrum Kladno, ČR
Published in: NuklMed 2020;9:76-84
Category: Review Article

Overview

Cardiac amyloidosis (CA) previously considered to be an untreatable disease is getting deserved attraction now, namely because of advances in imaging and recent approval of breakthrough therapies. Our review focuses on the two most frequent types of CA, immunoglobulin light chain (AL) amyloidosis and transthyretin (ATTR) amyloidosis. It deals predominantly with the diagnostic imaging procedures and briefly describe the therapy with the future perspective. The recent findings and progress in imaging made it possible early diagnosis and differentiation from other different hypertrophic cardiomyopathies. Magnetic resonance imaging enabled deeper understanding of basic pathophysiological processes in CA most importantly thanks to its ability to characterize tissue properties. A wide use of bone scintigraphy reduced the need of myocardial biopsy and improved diagnostic certainty in ATTR. There will be a higher demand for imaging procedures to diagnose CA early, to monitor therapeutic response and to be able to change properly therapeutic strategy thanks to a rapid progress in new therapies.

Keywords:

cardiac amyloidosis – cardiac magnetic resonance – cardiomyopathy – immunoglobulin light chain – transthyretin – echocardiography – bone scintigraphy


Sources
  1. Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis..Clin Med (Lond). 2018;18:30–35. https://doi.org/10.7861/clinmedicine.18-2-s30
  2. Fontana M, Banypersad SM, Treibel TA et al. Differential Myocyte Responses in Patients with Cardiac Transthyretin Amyloidosis and Light-Chain Amyloidosis: A Cardiac MR Imaging Study. Radiology. 2015;277:388–397. https://doi.org/10.1148/radiol.2015141744.
  3. Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol. 2016;68:1323–41. https://doi.org/10.1016/j.jacc. 2016.06.053.
  4. Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, Prognosis, and Therapy of Transthyretin Amyloidosis. J Am Coll Cardiol. 2015;66:2451–66. https://doi.org/10.1016/j.jacc.2015.09.075.
  5. Stables RH, Ormerod OJ. Atrial thrombi occurring during sinus rhythm in cardiac amyloidosis: evidence for atrial electromechanical dissociation. Heart 1996;75:426.
  6. Feng D, Edwards WD, Oh JK, et al. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation. 2007;116:2420–2426.
  7. Feng D, Syed IS, Martinez M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119:2490–2497.
  8. Tsai SB, Seldin DC, Wu H,et al. Myocardial infarction with “clean coronaries” caused by amyloid light-chain AL amyloidosis: a case report and literature review. Amyloid 2011;18:160–164.
  9. Dorbala S, Vangala D, Bruyere J Jr, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart failure. 2014;2:358–367.
  10. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 2004;94:1008–1010.
  11. Guan J, Mishra S, Qiu Y, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO molecular medicine. 2014;6):1493–1507.
  12. Kyle RA, Linos A, BeardCM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992;79:1817–1822.
  13. Pinney JH, Smith CJ, Taube JB, et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161:525–532. https://doi.org/10.1111/bjh.12286.
  14. Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54. https://doi.org/10.1016/S0140-6736(15)01274-X.
  15. Aimo A, Buda G, Fontana M, et al. Therapies for cardiac light chain amyloidosis: An update. Int J Cardiol. 2018;271:152–160. https://doi.org/10.1016/j.ijcard.2018.05.018.
  16. Grogan M, Dispenzieri A, GertzMA. Light-chain cardiac amyloidosis: strategies to promote early diagnosis and cardiac response. Heart. 2017;103:1065–1072. https://doi.org/10.1136/heartjnl-2016-310704.
  17. Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23:209–213. https://doi.org/10.1080/13506129.2016.1257986.
  18. CastañoAND, Hamid N, Khalique OK, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38:2879–87.
  19. Pinney JH, Whelan CJ, Petrie A, et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc. 2013;2: e000098. https://doi.org/10.1161/JAHA.113.000098.
  20. Carr AS, Pelayo-Negro AL, Evans MR, et al. A study of the neuropathy associated with transthyretin amyloidosis (ATTR) in the UK. J Neurol Neurosurg Psychiatry. 2016;87:620–627. https://doi.org/10.1136/jnnp-2015-310907.
  21. Yanagisawa A, Ueda M, Sueyoshi T, et al. Amyloid deposits derived from transthyretin in the ligamentum flavum as related to lumbar spinal canal stenosis. Mod Pathol. 2015;28:201–207. https://doi.org/10.1038/modpathol. 2014.102.
  22. Geller HI, Singh A, Alexander KM, et al. Association Between Ruptured Distal Biceps Tendon and Wild-Type Transthyretin Cardiac Amyloidosis. JAMA. 2017;318:962–963. https://doi.org/10.1001/jama.2017.9236.
  23. Coelho T, Maurer MS, Suhr OB. THAOS - The Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin. 2013;29:63-76. doi: 10.1185/03007995.2012.754348.
  24. Rowczenio DM, Noor I, Gillmore JD, et al. Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat. 2014;35:E2403–2412. https://doi.org/10.1002/humu.22619.
  25. Jacobson DR, Alexander AA, Tagoe C, et al. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333African-Americans. Amyloid 2015;22:171–174. https://doi.org/10.3109/13506129.2015.1051219.
  26. Castano A, Drachman BM, Judge D, et al. Natural history and therapy of TTR-cardiac amyloidosis: emerging diseasemodifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev. 2015;20:163–178. https://doi.org/10.1007/s10741-014-9462-7.
  27. Cyrille NB, Goldsmith J, Alvarez J, et al. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am J Cardiol 2014;114:1089–1093.
  28. Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol 2005; 95:535–537.
  29. Huang J, Zhao S, Chen Z, et al. Contribution of Electrocardiogram in the Differentiation of Cardiac Amyloidosis and Nonobstructive Hypertrophic Cardiomyopathy. Int Heart J 2015; 56:522–526.
  30. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J Am Coll Cardiol. 2017;70:466–477. https://doi.org/10.1016/j.jacc.2017.05.053.
  31. Gonzalez-Lopez E, Gagliardi C, Dominguez F, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J. 2017;38:1895–1904. https://doi.org/10.1093/eurheartj/ehx043
  32. Siddiqi OK, Ruberg FL. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med. 2018;28:10–21. https://doi.org/10.1016/j.tcm.2017.07.004.
  33. Murphy L, Falk RH. Left atrial kinetic energy in AL amyloidosis: can it detect early dysfunction? Am J Cardiol 2000;86:244–246.
  34. Modesto KM, Dispenzieri A, Cauduro SA, et al. Left atrial myopathy in cardiac amyloidosis: implications of novel echocardiographic techniques. Eur Heart J 2005;26:173–179. https://doi.org/10.1093/eurheartj/ehi040.
  35. Feng D, Edwards WD, Oh JK, et al. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation. 2007;116:2420–2426. https://doi.org/10.1161/CIRCULATIONAHA.107.697763.
  36. Martinez-Naharro A, Gonzalez-Lopez E, Corovic Aet al. High Prevalence of Intracardiac Thrombi in Cardiac Amyloidosis. J Am Coll Cardiol 2019;73: 1733–1734. https://doi.org/10.1016/j.jacc.2019.01.035.
  37. Falk RH, Quarta CC. Echocardiography in cardiac amyloidosis.Heart Fail Rev. 2015;20:125–131. https://doi.org/10.1007/s10741-014-9466-3.
  38. Siepen FAD, Bauer R, Voss A, et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin Res Cardiol. 2018;107:158–169. https://doi. org/10.1007/s00392-017-1167-1.
  39. Riffel JH, Mereles D, EmamiM, et al. Prognostic significance of semiautomatic quantification of left ventricular long axis shortening in systemic light-chain amyloidosis. Amyloid. 2015;22:45–53. https://doi.org/10.3109/13506129.2014.992515.
  40. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:186–193. https://doi.org/10.1161/01.CIR.0000152819.97857.9D.
  41. Fontana M, Pica S, Reant P, et al. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation. 2015;132:1570–1579. https://doi.org/10.1161/CIRCULATIONAHA.115.016567.
  42. ACR Manual On Contrast Media. 2020. American College of Radiology. Available from: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf.
  43. McDonald RJ, Levine D, Weinreb J, et al. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology. 2018;289:517–534. https://doi.org/10.1148/radiol.2018181151.
  44. McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology. 2015;275:772-782. https://doi.org/10.1148/radiol.15150025.
  45. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology. 2015;276:228–232. https://doi.org/10.1148/radiol.2015142690.
  46. Stojanov DA, Aracki-Trenkic A, Vojinovic S, et al. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium based contrast agent, gadobutrol. Eur Radiol. 2016;26:807–815. https://doi.org/10.1007/s00330-015-3879-9.
  47. Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and Other Non-Group 1 Gadolinium Contrast Agents Deposit Low Levels of Gadolinium in Brain and Bone Tissue: Preliminary Results From 9 Patients With Normal Renal Function. Investig Radiol. 2016;51:447–453. https://doi.org/10.1097/RLI.0000000000000252.
  48. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–6497. https://doi.org/10.1016/j.jcmg.2012.11.013.
  49. Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:157–165. https://doi.org/10.1016/j.jcmg.2013.10.008.
  50. Banypersad SM, Sado DM, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2013;6:34–39. https://doi.org/10.1161/CIRCIMAGING.112.978627.
  51. Martinez-Naharro A, Abdel-Gadir A, Treibel TA, et al. CMR-Verified Regression of Cardiac ALAmyloid After Chemotherapy. JACC Cardiovasc Imaging.2018;11:152–154. https://doi.org/10.1016/j.jcmg.2017.02.012.
  52. Ferreira VM, Piechnik SK, Robson MD, et al. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2mapping. J Thorac Imaging. 2014;29:147–154. https://doi.org/10.1097/RTI.0000000000000077.
  53. Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial Edema and Prognosis in Amyloidosis. J Am Coll Cardiol 2018;71:2919–2931. https://doi.org/10.1016/j.jacc.2018.03.536
  54. Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–1084. https://doi.org/10.1016/j.jacc.2005.05.073.
  55. Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation. 2016;133:2404–2412. https://doi.org/10.1161/CIRCULATIONAHA.116.021612.
  56. Hutt DF, Quigley AM, Page J, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging. 2014;15:1289–1298. https://doi.org/10.1093/ehjci/jeu107.
  57. Hutt DF, Fontana M, Burniston M, et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging. 2017;18:1344–1350. https://doi.org/10.1093/ehjci/jew325.
  58. Cappelli F, Gallini C, Costanzo EN, et al. Lung uptake during 99mTc-hydroxymethylene diphosphonate scintigraphy in patient with TTR cardiac amyloidosis: An underestimated phenomenon. Int J Cardiol. 2018;254: 346–350. https://doi.org/10.1016/j.ijcard.2017.10.027.
  59. Gertz MA, Brown ML, Hauser MF, et al. Utility of technetium Tc 99m pyrophosphate bone scanning in cardiac amyloidosis. Arch Intern Med 1987;147:1039–1044.
  60. Bokhari S, Castano A, Pozniakoff Tet al. (99 m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195–201.
  61. Rapezzi C, Quarta CC, Guidalotti PL, et al. Role of (99 m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc imaging 2011;4:659–470.
  62. Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99 mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076–1084.
  63. Dorbala S, Vangala D, Semer J, et al. Imaging cardiac amyloidosis: a pilot study using 18Fflorbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014;41:1652–1662. https://doi.org/10.1007/s00259-014-2787-6.
  64. Antoni G, Lubberink M, Estrada S, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013;54:213–220. https://doi.org/10.2967/jnumed.111.102053.
  65. Lee SP, Lee ES, Choi H, et al. 11CPittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2015;8:50–59.
  66. Galat A, Rosso J, Guellich A, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 2015;22:210–220.
  67. Gillmore JD, Damy T, Fontana M, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 2018;39:2799–2806. https://doi.org/10.1093/eurheartj/ehx589.
  68. Grogan M, Scott CG, Kyle RA, et al. Natural History of Wild-Type Transthyretin Cardiac Amyloidosis and Risk Stratification Using a Novel Staging System. J Am Coll Cardiol 2016;68:1014–1020. https://doi.org/10.1016/j.jacc.2016.06.033.
  69. Knight DS, Zumbo G, Barcella W, et al. Cardiac Structural and Functional Consequences of Amyloid Deposition by Cardiac Magnetic Resonance and Echocardiography and Their Prognostic Roles. JACC Cardiovasc Imaging 2019:12:823–833. https://doi.org/10.1016/j.jcmg.2018.02.016.
  70. Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018. Blood Cancer J 2018;8:44. https://doi.org/10.1038/s41408-018-0080-9.
  71. Merlini G, Dispenzieri A, Sanchorawala V, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers 2018;4:1–19. https://doi.org/10.1038/s41572-018-0034-3.
  72. Ruberg FL. Cardiac Amyloidosis: A Zebra Hiding in Plain Sight? Circ Cardiovasc Imaging. 2017;10:e006186. https://doi.org/10.1161/CIRCIMAGING.117.006186.
  73. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 2018;379: 22–31. https://doi.org/10.1056/NEJMoa1716793.
  74. Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N Engl J Med 2018;379: 1007–1016. https://doi.org/10.1056/NEJMoa1805689.
  75. Adams D, Gonzalez-Duarte A, O‘RiordanWD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 2018;379:11–21. https://doi.org/10.1056/NEJMoa1716153.
  76. Lang O. Možnosti scintigrafických metod u pacientů se srdečním selháním a zachovanou ejekční frakcí. NuklMed 2020;9:49-58
Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#