Umělá inteligence ve screeningu diabetické retinopatie: od nápadu po zdravotnický prostředek v klinické praxi
Authors:
Jozefína Vaľková; Matěj Adam; Jan Hlaváček
Authors‘ workplace:
Aireen a. s., Praha
Published in:
Čas. Lék. čes. 2023; 162: 290-293
Category:
Original Article
Overview
Se vzrůstajícím významem umělé inteligence (AI) ve zdravotnictví přicházejí i nové perspektivy v primární péči. Včasné odhalení diabetické retinopatie (DR), jedné z mikrovaskulárních komplikací diabetu mellitu, může jednak předejít vývoji do komplikovaných forem, jednak vést ke včasnému pátrání po dalších komplikacích diabetu. AI přináší slibné řešení, které může zvýšit dostupnost screeningového vyšetření diabetické retinopatie více pacientům. Klíčové je úspěšné uvedení řešení do klinické praxe, což je náročný proces s několika fázemi zajišťujícími, že výsledný zdravotnický prostředek bude účinný a bezpečný pro použití u pacientů.
Software Aireen využívá umělou inteligenci k provádění screeningu DR na snímcích sítnice z optických fundus kamer. Tento zdravotnický prostředek (ZP) splňuje evropské nařízení o zdravotnických prostředcích 2017/745 a v roce 2023 byl uveden na trh. Klíčovou roli v procesu celého jeho životního cyklu sehrála spolupráce mezi lékaři a vývojovým týmem. Lékaři se podíleli na definovaní určeného účelu použití ZP, analýze rizik, anotace dat určených pro učení a validaci softwaru a také klinické zkoušce. Klinická zkouška byla provedena na 1274 pacientech s diabetem 1. a 2. typu, kde ZP Aireen dosáhl senzitivity 94,0 % a specificity 90,7 % ve srovnání s referenčním hodnocením. Klinická zkouška tak potvrdila potenciál Aireen zvýšit dostupnost screeningu DR a zlepšit včasný záchyt onemocnění.
Klíčová slova:
diabetická retinopatie, screening, umělá inteligence
ÚVOD
V době, kdy umělá inteligence (AI) stále proniká hlouběji do našeho každodenního života, se zdá, že i zdravotnictví stojí na prahu významných změn. Jednou z oblastí, která nyní přitahuje zvýšenou pozornost, je využití AI v primární péči.
Dle zprávy Všeobecné zdravotní pojišťovny ČR (VZP) ze srpna 2022 přibližně 40 % diabetiků v Česku neabsolvuje pravidelné oftalmologické vyšetření diabetické retinopatie (DR) (1). DR je typickou mikrovaskulární komplikací onemocnění diabetem a je nejčastější příčinou slepoty pacientů produktivního věku ve vyspělých zemích (2). Tyto statistiky jasně upozorňují na naléhavou potřebu efektivního přístupu v oblasti prevence DR a použití AI se jeví jako slibné řešení. Vytvořit software, který dokáže rozpoznat raná stadia nemoci na základě dostupných dat, je velmi náročným úkolem, praxe potom ukazuje, že podobně náročnou výzvou je uvedení hotového produktu do klinické praxe. Pouze produkt certifikovaný dle Nařízení o zdravotnických prostředcích (2017/745) je možné uvést na trh Evropské unie (EU). V tomto článku se proto zaměříme na proces uvedení zdravotnického prostředku (ZP) založeného na umělé inteligenci na trh a roli, kterou v tomto procesu sehráli kliničtí experti – lékaři.
Aireen a. s. je česká technologická společnost, která vyvinula a v roce 2023 uvedla na trh originální produkt vlastního vývoje, software Aireen založený na AI, který je schopný rozeznat přítomnost DR na snímcích sítnice pořízeních optickou fundus kamerou. Software je určen k použití zdravotnickými pracovníky bez specializace v oblasti oftalmologie a je schopný dodat výsledek vyšetření do několika minut. Uvést tento zdravotnický prostředek na trh byl jak časově, tak finančně náročný proces. Od první myšlenky až po finální schválení trval více než 3 roky. Významnou roli v tomto procesu sehráli lékaři a lékařky podílející se na vývoji tohoto ZP. Schéma znázorňující jeho fáze je znázorněné na obr. 1. Dále v textu se budeme věnovat jednotlivým fázím podrobněji.
FÁZE 1: DEFINICE URČENÉHO ÚČELU POUŽITÍ ZDRAVOTNICKÉHO PROSTŘEDKU
Na úplném začátku procesu vývoje ZP je nezbytné precizně definovat určený účel použití. Pro nás zcela zásadní otázka zněla: Bude systém Aireen sloužit pouze jako podpůrný nástroj pro oftalmology (decision making support), nebo bude schopen plně zastoupit kvalifikovaného lékaře v oblasti screeningu DR?
Na základě opakovaných diskusí s odborníky – diabetology i oftalmology – jsme dospěli k závěru, že pouze zcela autonomní nástroj pomůže odlehčit zahlcení oftalmologů, zlepšit situaci dostupnosti screeningu, přispět k včasnému záchytu DR a v konečném důsledku se podílet na zlepšení kvality života diabetologického pacienta. Toto rozhodnutí mělo zásadní dopad na celý vývojový proces.
FÁZE 2: ANALÝZA RIZIK
Po stanovení určeného účelu byla provedena analýza rizik zdravotnického prostředku. Cílem analýzy rizik je odhalit veškeré nebezpečné situace včetně těch rozumně předvídatelných, které mohu nastat při správném a také při chybném použití ZP. Zde zkušenosti z klinické praxe a vědomosti lékařů hrají významnou roli, protože pomáhají identifikovat možná rizika a náležitě je analyzovat.
Největším rizikem Aireen a dalších screeningových metod je falešně negativní výsledek, který může způsobit progresi onemocnění z důvodu opožděně stanovené výsledné diagnózy. Toto riziko nelze nikdy zcela vyloučit, ale pečlivě provedeným návrhem ZP a následným ověřením ho lze omezit na přijatelnou úroveň.
FÁZE 3: NÁVRH ZP
Po provedení rizikové analýzy následuje fáze samotného návrhu, kdy výstupy z rizikové analýzy vstupují jako požadavky na vlastnosti, architekturu a infrastrukturu softwaru, ale též na instrukce poskytnuté cílovým uživatelům.
Pro dosažení co nejvyšší senzitivity detekce případů DR jsme v této fázi navrhli model AI, který je schopen ověřit kvalitu vstupních snímků pro screening. Požadavky na AI byly stanoveny tak, aby byly pro screening DR propuštěny pouze snímky, které lékaři považují za dostatečně kvalitní a které pokrývají požadovanou oblast sítnice. Součástí návrhu softwarového ZP byla rada dalších požadavků včetně kybernetické bezpečnosti, zátěžových testů softwaru a požadavků na intuitivní uživatelské rozhraní.
FÁZE 4: VÝVOJ
Specifikem vývoje softwarového ZP založeného na umělé inteligenci je „trénování“ neboli „učení“. Trénování modelů AI můžeme přirovnat k mladému lékaři, který postupně s vyhodnocováním více a více snímků zlepšuje svoje hodnoticí schopnosti. Stejný princip je uplatňován v procesu trénování, kdy AI čte statisíce snímků a postupně zlepšuje své „dovednosti“. Klíčem k dosažení správných výsledků je neustálá spolupráce lékařů a vývojového týmu na analýze chybných výsledků. Analyzované chyby jsou podkladem k dalšímu trénování, až nakonec vznikne finální model AI, který vykazuje dostatečnou úroveň senzitivity a specificity. Pro natrénovaní modelu AI pro screening diabetické retinopatie byl použit přibližně 1 milion snímků.
FÁZE 5: VALIDACE
Po ukončení vývojových prací následuje validace výsledného ZP. Finální verze Aireen byla podrobena rozsáhlému internímu testování. Pro testování byly použity snímky dostupné z veřejných datasetů, které byly dodatečně anotovány. Jako referenční hodnocení byla považována shoda 2 lékařů, jelikož i názory odborníků zejména v časných stadiích nemoci se liší. Kromě ověření modelů AI byl software validován z hlediska nefunkčních požadavků, kdy byla ověřována rychlost provedení analýzy jak v běžném, tak špičkovém provozu.
Výsledky testování potvrdily, že použití Aireen – od nahrání snímku, přes ověření jeho kvality až po samotný výsledek analýzy – trvá přibližně 1–2 minuty v závislosti na rychlosti internetového připojení uživatele. Rychlost vyhodnocení vstupních snímků byl z jedním ze základních požadavků na systém, jelikož cílem použití Aireen je co nejmenší zatížení klinického provozu. Výstupem validace též bylo potvrzení kybernetické bezpečnosti a splnění požadavků na ochranu osobních údajů.
Rozsáhla validace potvrdila potenciál využití AI ve screeningu DR a bezpečnost systému, který tak byl propuštěn do fáze klinického zkoušení.
FÁZE 6: KLINICKÉ HODNOCENÍ
Cílem klinické zkoušky je potvrdit klinické přínosy zdravotnického prostředku. Klíčovým faktorem pro dosažení tohoto cíle je vhodný design zkoušky, který dokáže co nejpřesněji simulovat skutečné podmínky, ve kterých bude ZP používán.
Metodika klinické zkoušky Aireen vycházela z předpokladů, že ZP je určen k použití jakýmkoliv zdravotnickým pracovníkem, předpokládaným klinickým přínosem je zvýšení dostupnosti a včasný záchyt DR a přesnost hodnocení dle Aireen je srovnatelná s existujícím standardem. Pro dosažení co nejrelevantnějších výsledků jsme si zvolili jako zkoušející centra diabetologické ambulance, které představují běžnou praxi, kde personál nemá předchozí zkušenosti s oftalmologickým vyšetřením. Celkem byla do klinické zkoušky zapojena 4 diabetologická centra a vyšetření podstoupilo 1274 pacientů s diabetem 1. i 2. typu. Snímkování bylo provedeno digitální nemydriatickou sítnicovou kamerou Canon CR-2 AF. Metodika hodnocení je znázorněná na obr. 2.
Snímky byly analyzovány současně Aireen, 2 všeobecnými oftalmology a 2 sítnicovými specialisty. Nesouladné případy byly posouzeny komisí složené ze 3 sítnicových specialistů, tzv. expertním panelem. Je důležité zdůraznit, že úroveň péče poskytovaná tímto expertním panelem je mimořádná a v praxi nerealizovatelná. Oboustranný 95% interval spolehlivosti byl zkonstruován pro relativní frekvenci (%) příznaků DR zachycených Aireen a lékaři, což reprezentovalo úroveň shody mezi Aireen a klinickým (referenčním) hodnocením.
Výsledky klinické zkoušky jsou shrnuty v tab. 1, kde můžeme vidět, že Aireen dosáhla senzitivity 94,0 % a specificity 90,7 % v porovnání s referenčním hodnocením expertního panelu. Z výsledků v tab. 2 je patrné, že Aireen dosáhla nejvyšší hodnoty senzitivity a specificity v porovnání s oftalmology a sítnicovými specialisty. Výsledkem této klinické zkoušky je, že ZP má potenciál zvýšit dostupnost screeningu DR, podílet se na včasném záchytu onemocnění a je bezpečný a účinný pro použití v běžné praxi.
Tab. 1 Senzitivita, specificita a pozitivní predikce Aireen vůči referenčnímu hodnocení
Výstup Aireen |
Klinická diagnóza DR (referenční hodnocení) |
|||
pozitivní |
falešně negativní |
negativní |
falešně pozitivní |
|
(Potenciální) nález symptomů DR |
458 |
29 |
73 |
73 |
Bez nálezu symptomů DR |
29 |
714 |
||
Senzitivita (%) |
458/(458+29) = 94,0 % |
|||
Specifita (%) |
714/(73+714) = 90,7 % |
|||
Pozitivní predikce (%) |
458/(458+73) = 86,3 % |
Tab. 2 Porovnání senzitivity, specifity a pozitivní predikce jednotlivých stupňů hodnocení
Parametr |
Aireen |
Všeobecný oftalmolog |
Sítnicový specialista |
Senzitivita (%) |
94,0 |
90,1 |
87,1 |
Specifita (%) |
90,7 |
76,6 |
81,2 |
Pozitivní predikce (%) |
86,3 |
70,4 |
74,1 |
FÁZE 7: SLEDOVÁNÍ ZP PO UVEDENÍ NA TRH
Je důležité si uvědomit, že uvedením zdravotnického prostředku na trh proces nekončí, naopak je nezbytné systematicky analyzovat dostupná data a získávat zpětnou vazbu z klinického provozu. Hlavním cílem klinického sledování ZP po uvedení na trh je opakované potvrzení, že Aireen je bezpečný a účinný prostředek pro použití v klinické praxi. Nedílnou součástí je sběr podnětů pro zlepšování produktu a analýza případných nedostatků, které pak opětovně vstupují do procesu návrhu ZP jako vstupní požadavky.
ZÁVĚR
Výsledky klinické zkoušky Aireen, stejně jako další studie, které se zaměřují na využití AI v primární péči, nám dávají jasný signál: Umělá inteligence má potenciál změnit paradigma diagnostiky a péče o pacienty. Schopnost AI detekovat časná stadia onemocnění a odlehčit odborníkům od rutinních činností přináší naději na zvýšení dostupnosti a kvality zdravotní péče. Proces vývoje zdravotnického prostředku včetně splnění veškerých legislativních náležitostí pro vytvoření certifikovaného produktu vyžaduje úzkou spolupráci mezi technologickými firmami a lékaři a je klíčovým prvkem úspěchu v oblasti inovací v zdravotnictví. Tato symbióza znalostí a dovedností umožňuje přenášet teoretické koncepty do praktického provozu a vytvářet prostředky, které skutečně přinášejí přidanou hodnotu pro pacienty i zdravotníky.
Čestné prohlášení
Autoři v souvislosti se vznikem a tématem článku prohlašují, že byli v uplynulých 24 měsících smluvně vázáni se společností Aireen.
Adresa pro korespondenci:
Ing. Jozefína Vaľková
Aireen a. s.
Vodičkova 736/17, 110 00 Praha 1
Tel.: 774 052 530
e-mail: jozefina.valkova@aireen.com
Sources
- . 40 % diabetiků chybí oční vyšetření, nově ho mohou poskytnout přímo diabetologové. VZP ČR, 2022. Dostupné na: www.vzp.cz/o-nas/aktuality/40-diabetiku-chybi-ocni-vysetreni-nove-ho-mohou-poskytnout-primo-diabetologove
- Karen I, Svačina š. Diabetes mellitus. Novelizace 2020. Doporučené diagnostické a terapeutické postupy pro všeobecné praktické lékaře. SVL ČLS JEP, Praha, 2020.
Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistArticle was published in
Journal of Czech Physicians
Most read in this issue
- Umělá inteligence v medicíně a zdravotnictví: Příležitost a/nebo hrozba?
- Využití umělé inteligence v zobrazovacích metodách
- Otazníky a dotazníky kolem akutního klimakterického syndromu
- Trendy plodnosti a potratovosti v Česku