MicroRNAs and kidneys
Authors:
Jana Stříteská 1; Jana Nekvindová 2; Vladimír Černý 3; Vladimír Palička 4
Authors‘ workplace:
Univerzita Karlova v Praze, Lékařská fakulta, Hradec Králové
; Dalhousie University, Department of Anesthesia, Pain Management and Perioperative Medicine, Halifax, Canada
; Univerzita Karlova v Praze, Lékařská fakulta v Hradci Králové
; Ústav molekulární a translační medicíny, Lékařská fakulta Univerzity Palackého, Olomouc
; Klinika anesteziologie, resuscitace a intenzivní medicíny, Fakultní nemocnice, Hradec Králové
1; Ústav klinické biochemie a diagnostiky, Fakultní nemocnice, Hradec Králové
2; Klinika anesteziologie, resuscitace a intenzivní medicíny, Fakultní nemocnice, Hradec Králové
3; Ústav klinické biochemie a diagnostiky, Fakultní nemocnice Hradec Králové
4
Published in:
Čas. Lék. čes. 2014; 153: 187-192
Category:
Review Articles
Overview
MicroRNAs are short non-coding ribonucleic acid molecules that regulate gene expression at the post-transcriptional level thus affecting important physiological as well as pathophysiological processes in the organism, for example cell differentiation, proliferation, apoptosis, and metabolism. They are involved in pathogenesis of many diseases including cancer. Many microRNAs are tissue or organ-specific which implies their possible potential as biomarkers or maybe even therapeutical agents as documented by microRNA research interest rising exponentially during last years. Among all, microRNAs are important also for physiological function of the kidney and they are involved in various renal disorders. Today research is focused mainly on renal and urinary tract carcinogenesis, acute kidney injury, chronic renal diseases (polycystic kidney disease) or renal complications of systemic diseases such as diabetic or hypertension nephropathy and autoimmune kidney injury including acute allograft rejection after kidney transplantation. The review summarizes current information about microRNA effect on kidney development and function and also on the most common kidney diseases.
Keywords:
microRNA – acute kidney injury – diabetic nephropathy – gene expression profiles – biomarkers
Sources
1. Li JY, Yong TY, Michael MZ, Gleadle JM. Review: the role of microRNAs in kidney disease. Nephrology (Carlton) 2010; 15(6): 599–608.
2. Mahmood-ur-Rahman, Ali I, Husnain T, Riazuddin S. RNA interference: the story of gene silencing in plants and humans. Biotechnol Adv 2008; 26(3): 202–209.
3. Slabý O. MikroRNA vstupují do klinického testování. Klin Onkol 2012; 25(2): 139–142.
4. Duxbury MS, Whang EE. RNA interference: a practical approach. J Surg Res 2004; 117(2): 339–344.
5. Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 2008; 23(10): 578–587.
6. Shan G. RNA interference as a gene knockdown technique. Int J Biochem Cell Biol 2010; 42(8): 1243–1251.
7. Karolina DS, Wintour EM, Bertram J, Jeyaseelan K. Riboregulators in kidney development and function. Biochimie 2010; 92(3): 217–225.
8. Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat Res 2011; 717(1-2): 1–8.
9. Kaucsár T, Rácz Z, Hamar P. Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease. Adv Drug Deliv Rev 2010; 62(14): 1390–1401.
10. miRBase: the microRNA database http://www.mirbase.org/cgi-bin/browse.pl?org=hsa
11. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011; 80: 193–208.
12. Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012; 22(3): 125–132.
13. Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev 2007; 59: 101–114.
14. Tang Y, Liu D, Zhang L, Ingvarsson S, Chen H. Quantitative analysis of miRNA expression in seven human foetal and adult organs. PLoS ONE 6(12): e28730. doi:10.1371/journal.pone.0028730.
15. Akkina S, Becker BN. MicroRNAs in kidney function and disease. Transl Res 2011; 157(4): 236–240.
16. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional MicroRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 2008; 19: 2069–2075.
17. Wessely O, Agrawal R, Tran U. MicroRNAs in kidney development: lessons from the frog. RNA Biol 2010; 7(3): 296–299.
18. Ho J, Kreidberg JA. MicroRNAs in renal development. Pediatr Nephrol 2013; 28(2): 219–225.
19. Kvapil M. Manifestní diabetická nefropatie. Vnitř. Lék. 2005; 51(S1):S45–S49.
20. Kato M, Arce L, and Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 2009; 4: 1255–1266.
21. Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res 2012; 18: 993–1000.
22. Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol 2011; 300(3): F602–F610.
23. Alvarez ML, DiStefano JK. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract 2013; 99(1): 1–11.
24. Heggermont WA, Heymans S. MicroRNAs are involved in end-organ damage during hypertension. Hypertension 2012; 60(5): 1088–1093.
25. Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int 2012; 81: 617–627.
26. Lorenzen JM, Kielstein JT, Hafer C, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 2011; 6(7): 1540–1546.
27. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 2013; 28: 254–273.
28. Wang N, Zhou Y, Jiang L, et al. Urinary MicroRNA-10a and MicroRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS ONE 2012; 7(12): e51140. doi: 10.1371/journal.pone.0051140.
29. Saikumar J, Hoffmann D, Kim TM, et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012; 129(2): 256–267.
30. Bhatt K, Zhou L, Mi QS, Huang S, She JX, Dong Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med 2010; 16(9–10): 409–416.
31. Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl Immunol 2008; 19(1): 81–85.
32. Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 2009; 106(13): 5330–5335.
33. Lorenzen JM, Volkmann I, Fiedler J, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 2011; 11(10): 2221–2227.
34. Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol 2012; 7(9): 1528–1533.
35. Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant 2011; 11(10): 2110–2122.
36. Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 2009; 18(4): 317–323.
37. Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007; 25(5): 387–392.
38. Catto JW, Alcaraz A, Bjartell AS, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 2011; 59(5): 671–681.
39. Redova M, Poprach A, Nekvindova J, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 2012; 10: 55. doi: 10.1186/1479-5876-10–55.
40. Zaman MS, Shahryari V, Deng G, et al. Up-regulation of microRNA-21 correlates with lower kidney cancer survival. PLoS One 2012; 7(2): e31060; doi: 10.1371/journal.pone.0031060.
41. Slaby O, Redova M, Poprach A, et al. Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosomes Cancer 2012; 51(7): 707–716.
Labels
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistArticle was published in
Journal of Czech Physicians
Most read in this issue
- Monogenic obesity – current status of molecular genetic research and clinical importance
- Genetic background in common forms of obesity – from studies on identical twins to candidate genes of obesity
- MicroRNAs and kidneys