Genetics and pharmacogenetics of osteoporosis
Authors:
Ivana Žofková 1; Radoslav Omelka 2
Authors‘ workplace:
Endokrinologický ústav Praha, ředitelka doc. RNDr. Běla Bendlová, CSc.
1; Katedra botaniky a genetiky Fakulty prírodných vied Univerzity Konštantína Filozofa Nitra, Slovenská republika, vedúci katedry doc. RNDr. Roman Kuna, PhD.
2
Published in:
Vnitř Lék 2014; 60(7-8): 575-581
Category:
Reviews
Overview
Osteoporosis is a serious disease characterized by high morbidity and mortality due to atraumatic fractures. In pathogenesis of osteoporosis, except environment, internal factors, such as hormonal dysbalance and genetic background, are also in play. In this review, candidate genes for osteoporosis are classified accorging to metabolic or hormonal pathways, which regulate bone mineral density/and or quality (estrogen, RANKL/RANK/OPG, mevalonate, Wnt circuit, genes for collagen and vitamin D). Authors discuss the perspectives of practical utilization of pharmacogenetics (identification of single candidate genes using PCR) or pharmacogenomics (using genome wide association studies) in choise of optimal treatment of osteoporosis. Potentional predictors of effectivity of antiresorption therapy are genes ER, FDPS, Cyp19A1, VDR, Col1A1 and gene of Wnt pathway. Moreover, polymorphisms of CYP2C gene, but also FDPS may identify patients with high risk of undesirable effects of bisphosphonates (osteonecrosis of jaw). Unfortunately, results of the most association studies has not been confirmed by other investigators. The controversial results could be explained by different methodic approches in individual studies (different sample size, homogenity of investigated groups, ethnic differences or linkage disquilibrium between genes). Key cliff of association studies is low variability (7-10 %) of bone phenotypes associated with investigated genes. Nevertheless, identification of new genes and verification their association with bone denzity and/or quality using both PCR and genome wide association studies remain to be a great challenge targeting optimal prevention and treatment of osteoporosis.
Key words:
calcitonin – candidate genes for osteoporosis – osteoporosis – pharmacogenetics of osteoporosis – vitamin D
Sources
1. Obermayer-Pietsch B. Genetics of osteoporosis. Wien Med Wochenschr 2006; 156(5–6): 162–167.
2. Bathum L, von Bornemann Hjelmborg J, Christiansen L et al. Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased risk of fractures: results from a population-based Danish twin study. Osteoporos Int 2004; 15(8): 659–664.
3. Ongphiphadanakul B. Osteoporosis: the role of genetics and the environment. Forum Nutr 2007; 60: 158–167.
4. Guo Y, Tan LJ, Lei SF et al. Geonome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet 2010; 6(1): e1000806. Dostupné z DOI: <http://doi: 10.1371/journal.pgen.1000806>.
5. Riancho JA, Hernándeze JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics 2012; 13(7): 815–829.
6. Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14(6): 641–653.
7. Ischikawa S, Koller DL, Peacock M et al. Polymorphisms in the estrogen receptor beta (ESR2) gene are associated with bone mineral density in Caucasian men and women. J Clin Endocrinol Metab 2005; 90(11): 5921–5927.
8. Zofkova I, Zajickova K, Hill M. The estrogen receptor alpha gene determines serum androstenedione levels in postmenopausal women. Steroids 2002; 67(10): 815–819.
9. Riancho JA, Valero C, Zarrabeitia MT et al. Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women. BMC Med Genet 2008; 9: 112.
10. Simpson ER. Role of aromatase in sex steroid action. J Mol Endocrinol 2000; 25(2): 149–156.
11. Czerny B, Kaminski A, Kurzawski M et al. The association of IL-1beta, and IL-6 gene polymorphisms with bone mineral density and osteoporosis in postmenopausal women. Eur J Obstet Gynecol Reprod Biol 2010; 149(1): 82–85.
12. Wang C, He JW, Qin YJ et al. Osteoprotegerin gene polymorphism and therapeutic response to alandronate in postmenopausal women with osteoporosis. Zhonghua Yi Xue Za Zhi 2009; 89(42): 2958–2962.
13. Mencel-Bedrač S, Přeželí J, Marc J. TNFRSF11B gene polymorphisms 1181≥C and 245T≥G as well as hyplotype CT influence bone mineral density in postmenopausal women. Maturitas 2011; 69(3): 263–267.
14. Ueland T, Bollerslev J, Wilson SG et al. No associations between OPG gene polymorphisms or serum levels and measures of osteoporosis in elderly Australian women. Bone 2007; 40(1): 175–181.
15. Whyte MP, Reinus WH, Mumm S. High-bone-mass disease and LRP5. N Engl J Med 2004; 350(20): 2096–2099.
16. Glass DA 2nd, Bialek P, Ahn JD et al. Canonical Wnt signaling in diferentiated osteoblasts control osteoclast differentiation. Dev Cell 2005; 8(5): 751–764.
17. Li X, Ominsky MS, Warmington KS et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009; 24(4): 578–588.
18. Van Meurs JB, Trikalinos TA, Ralston SH et al. GENOMOS study. Large scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 2008; 299(11): 1277–1290.
19. Uitterlinden AG, Burger H, Huang O et al. Relation of alleles of collagen type Ialpha gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 1998; 338(15): 1016–1021.
20. Ralston SH, Uitterlinden AG, Brandi ML et al. Large-scale evidence for the effect of COLIA1 Sp1 polymorphism on osteoporosis outcomes: The GENOMOS study. PLoS Med 2006; 3(4): e90.
21. Jin H, van’t Hof RJ, Albagha OM et al. Promoter and intron 1 polymorphisms of COL1A1 interact to regulace transcription and susceptibility to osteoporosis. Hum Mol Genet 2009; 18(15): 2729–2738.
22. Ge DX, Li L, Wu J et al. 1,25(OH), dihydroxyvitamin D3 induces the formation of osteoclasts from mononuclear cells of rat marrow. Sichuan D Xue Xue Bao Yi Xue Ban 2007; 38(2): 213–216.
23. Riggs BL, Nguyen TV, Melton LJ 3rd et al. The contribution of vitamin d receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 1995; 10(6): 991–996.
24. Masi L, Cimaz R, Simonini G et al. Association of low bone mass with vitamin d receptor gene and calcitonin receptor gene polymorphisms in juvenile idiopathic arthritis. J Rheumatol 2002; 29(10): 2225–2231.
25. Ahn J, Yu K, Stolzenberg-Solomon R et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010; 19(13): 2739–2745.
26. Braga V, Mottes M, Mirandola S et al. Association of CTR and COLIA1 alleles with BMD values in peri- and postmenopausal women. Calcif Tissue Int 2000; 67(5): 361–366.
27. Zofkova I, Zajíčkova K, Hill M et al. Does polymorphism C1377T of the calcitonin receptor gene determine bone mineral density in postmenopausal women? Exp Clin Endocrinol Diabetes 2003; 111(7): 447–479.
28. Charopoulos I, Trovas G, Stathopoulou M et al. Lack of association between vitamin D and calcitonin receptor gene polymorphisms and forearm bone values of young Greek males. J Musculoskelet Neuronal Interact 2008; 8(2): 196–203.
29. Liu YZ, Wilson SG, Wang L et al. Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study. PLoS One 2008; 3(9): e3160. Dostupné z DOI: <http://doi: 10.1371/journal.pone.0003160>.
30. Mitchell BD, Streeten EA. Clinical impact of recent genetic discoveries in osteoporosis. Appl Clin Genet 2013; 6: 75–85.
31. Zofkova I, Zajickova K, Hill M. Postmenopausal serum androstenedione levels are associated with the calcitonin receptor gene polymorphism T1377C. A pilot study. I Endocrinol Invest 2004; 27(5): 442–444.
32. Zofkova I, Zajickova K, Hill M. Serum parathyroid hormone levels are associated with FokI polymorphism of the vitamin D receptor gene in untreated postmenopausal women. Eur J Intern Med 2003; 14(4): 232–236.
33. Zofkova I, Hill M, Zajickova K. Association of C/T polymorphism in the LRP5 gene with circulating follicle stimulating hormone in Caucasian postmenopausal women. Physiol Res 2007; 56(6): 735–739.
34. Laaksonen MM, Outila TA, Karkkainen MU et al. Association of vitamin D receptor, calcium-sensing receptor and parathyroid hormone gene polymorphisms with calcium homeostasis and peripheral bone density in adult Finns. J Nutrigenet Nutrigenomics 2009; 2(2): 55–63.
35. Zajickova K, Zofkova I, Hill M et al. Apolipoprotein E 4 allele is associated with low bone density in postmenopausal women. J Endocrinol Invest 2003; 26(4): 312–315.
36. Kobayashi N, Fujino T, Shirogane T et al. Estrogen receptor alpha polymorphism as a genetic marker for bone loss, vertebral fractures and susceptibility to estrogen. Maturitas 2002; 41(3): 193–201.
37. Heilberg IP, Hernandez E, Alfonzo E et al. Estrogen receptor (ER) gene polymorphism may predict the bone mineral density response to raloxifene in postmenopausal women on chronic hemodialysis. Ren Fail 2005; 27(2): 155–161.
38. Marini F, Falchetti A, Silvestri S et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin 2008; 24(9): 2609–2615.
39. Olmos JM, Zarrabeitia MT, Hernández JL et al. Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J 2012; 12(3): 227–232.
40. Queshi AM, Herd RJ, Blake GM et al. COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int 2002; 70(3): 158–163.
41. Kruk M, Ralston SH, Albagha OM. LRP5 Polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int 2009; 84(3): 171–179.
42. Wu Q, Bencaz AF, Crowell MD. Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case-control studies. Ostetoporos Int 2012; 23(1): 365–375.
43. Arabi A, Zahed L, Mahfoud Z et al. Vitamin D receptor gene polymorphisms modulate the skeletal response to vitamin D supplementation in healthy girls. Bone 2009; 45(6): 1091–1097.
44. Cannon JG, Cortez-Cooper M, Meaders E et al. Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am J Physiol Regul Integr Comp Physiol 2010; 298(3): R790-R798.
45. Estrada K, Evangelou E, Hsu YH et al. Association analyses of 47,500 individuals identifies six fracture loci and 82 BMD loci clustering in biological pathways that regulate osteoblast and osteoclast activity. Bone 2011; 48 (Suppl 2): S69.
46. Rukov JL, Shomron N. MicroRNA pharmacogenomics: post-transcriptional regulation of drug response. Trends Mol Med 2011; 17(8): 412–422.
47. Zheng HF. An example design of large-scale next-generation sequencing study for bone mineral density. IBMS BoneKEy 2013; 10: Article number 398. Dostupné z DOI: <http:// doi:10.1038/bonekey.2013.132>.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2014 Issue 7-8
Most read in this issue
- Endoscopic classification of colon and rectal neoplasias
- Acute pancreatitis – Validation of Revised Atlanta Classification on 159 patients and prognostic factors
- Crohn's Disease Surgery
- Management of patients with dyspepsia