The role of central nervous system in etiopathogenesis of peripheral organ diseases
Authors:
B. Mravec 1,2
Authors‘ workplace:
Ústav patologickej fyziológie Lekárskej fakulty UK Bratislava, Slovenská republika, prednosta doc. MUDr. Marián Bernadič, CSc., mim. prof.
1; Ústav experimentálnej endokrinológie SAV Bratislava, Slovenská republika, riaditeľ prof. MUDr. Iwar Klimeš, DrSc.
2
Published in:
Vnitř Lék 2011; 57(10): 839-846
Category:
Reviews
Overview
Current research on the etiopathogenesis of diseases of peripheral organs is primarily focused on the study of processes affecting those organs directly altered by diseases. As a result, therapeutic interventions are focused on the cells of those organs affected by pathological processes. However, pathological processes are not restricted to any “circumscribed” group of cells. Cells of tissue affected by pathological process interact with cells in the surrounding tissues. Moreover, pathologic processes also induce changes in the activity of the neuroendocrine and immune systems, which also affect the progression of pathological processes. The neurobiological view of diseases is based on the assumption that the nervous system processes signals related to pathological processes in peripheral organs and then consequently modulates it via the autonomic, neuroendocrine, and neuroimmune regulations. The aim of this paper is to explain the basis of the neurobiological view of diseases of the peripheral organs, and then discuss possible therapeutic consequences.
Key words:
immune system – neuroendocrine system – neurobiology of diseases – inflammation
Sources
1. Mravec B. Neurobiológia chorôb periférnych tkanív. Bratislava SAP 2008.
2. Mravec B, Ondicova K, Valaskova Z et al. Neurobiological principles in the etiopathogenesis of disease: when diseases have a head. Med Sci Monit 2009; 15: RA6–RA16.
3. Valášková Z, Kiňová S, Danihel L et al. The complexity of interactions of the tumour growth process. Vnitř Lék 2009; 55: 1145–1158.
4. Lane RD, Waldstein SR, Chesney MA et al. The rebirth of neuroscience in psychosomatic medicine, Part I: historical context, methods, and relevant basic science. Psychosom Med 2009; 71: 117–134.
5. Koukolík F. Mozek a jeho duše. 3. vyd. Praha: Galén; 2005.
6. Jänig W. The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge: Cambridge University Press 2006.
7. Banks WA, Erickson MA. The blood--brain barrier and immune function and dysfunction. Neurobiol Dis 2010; 37: 26–32.
8. Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8: 279–289.
9. Hwang IK, Yoo KY, Han TH et al. Enhanced cell proliferation and neuroblast differentiation in the rat hippocampal dentate gyrus following myocardial infarction. Neurosci Lett 2009; 450: 275–280.
10. Felder RB, Francis J, Zhang ZH et al. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 2003; 284: R259–276.
11. Li YF, Patel KP. Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand 2003; 177: 17–26.
12. Kergozien S, Delcros JG, Jouan H et al. Induction of Fos protein expression in spinal cord neurons of tumour-bearing rats. Br J Cancer 1999; 80: 1512–1517.
13. Konsman JP, Blomqvist A. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat. Eur J Neurosci 2005; 21: 2752–2766.
14. Pirnik Z, Bundzikova J, Bizik J et al. Activity of brain stem groups of catecholaminergic cells in tumor-bearing rats: response to immobilization stress. Ann N Y Acad Sci 2008; 1148: 141–147.
15. Hollis JH, Lightman SL, Lowry CA. Integration of systemic and visceral sensory information by medullary catecholaminergic systems during peripheral inflammation. Ann N Y Acad Sci 2004; 1018: 71–75.
16. Tashiro M, Kubota K, Itoh M et al. Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology 1999; 8: 283–286.
17. Tashiro M, Itoh M, Kubota K et al. Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology 2001; 10: 541–546.
18. Golan H, Kennedy JA, Frenkel A et al. Brain Mapping of Patients with Lung Cancer and Controls: Inquiry into Tumor-to-Brain Communication. J Nucl Med 2009; 50: 1072–1075.
19. Peng YP, Qiu YH, Qiu J et al. Cerebellar interposed nucleus lesions suppress lymphocyte function in rats. Brain Res Bull 2006; 71: 10–17.
20. Pirnik Z, Bundzikova J, Francisty T et al. Effect of liver ischemia-reperfusion injury on the activity of neurons in the rat brain. Cell Mol Neurobiol 2009; 29: 951–960.
21. Bundzikova J, Pirnik Z, Lackovicova L et al. Activation of different neuronal phenotypes in the rat brain induced by liver ischemia-reperfusion injury: Dual Fos/neuropeptide immunohistochemistry. Cell Mol Neurobiol 2011; 31: 293–310.
22. Palkovits M, Sebekova K, Gallatz K et al. Neuronal activation in the CNS during different forms of acute renal failure in rats. Neuroscience 2009; 159: 862–882.
23. Heidland A, Sebekova K, Klassen A et al. Mechanisms of acute uremic encephalopathy: early activation of Fos and Fra-2 gene products in different nuclei//areas of the rat brain. J Ren Nutr 2010; 20: S44–S50.
24. Carlson DE, Chiu WC, Fiedler SM et al. Central neural distribution of immunoreactive Fos and CRH in relation to plasma ACTH and corticosterone during sepsis in the rat. Exp Neurol 2007; 205: 485–500.
25. Petrovický P. Anatomie s topografií a klinickými aplikacemi. III. svazek. Neuroanatomie, smyslová ústrojí a kůže. Martin: Vydavateľstvo Osveta 2002.
26. Mendler L, Pintér S, Kiricsi M et al. Regeneration of reinnervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype. J Histochem Cytochem 2008; 56: 111–123.
27. Gauthier GF, Burke RE, Lowey S et al. Myosin isozymes in normal and cross-reinnervated cat skeletal muscle fibers. J Cell Biol 1983; 97: 756–771.
28. Bartness TJ, Song CK. Brain-adipose tissue neural crosstalk. Physiol Behav 2007; 91: 343–351.
29. Ganong WF. Přehled lékařské fyziologie. 20. vyd. Praha: Galén 2005.
30. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 2006; 6: 318–328.
31. Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853–859.
32. Andersson J. The inflammatory reflex – introduction. J Intern Med 2005; 257: 122–125.
33. Tracey KJ. Understanding immunity requires more than immunology. Nat Immunol 2010; 11: 561–564.
34. Couzin-Frankel J. Inflammation bares a dark side. Science 2010; 330: 1621.
35. Szczepanska-Sadowska E, Cudnoch--Jedrzejewska A, Ufnal M et al. Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol 2010; 61: 509–521.
36. Mravec B, Ondičová K. Nervus vagus. Bratislava: SAP 2010.
37. Meisel C, Schwab JM, Prass K et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005; 6: 775–786.
38. Koch HJ, Uyanik G, Bogdahn U et al. Relation between laterality and immune response after acute cerebral ischemia. Neuroimmunomodulation 2006; 13: 8–12.
39. Keyszer G, Langer T, Kornhuber M et al. Neurovascular mechanisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs. Ann Rheum Dis 2004; 63: 1349–1351.
40. Sethi S, Sequeira W. Sparing effect of hemiplegia on scleroderma. Ann Rheum Dis 1990; 49: 999–1000.
41. Dolan AL. Asymmetric rheumatoid vasculitis in a hemiplegic patient. Ann Rheum Dis 1995; 54: 532.
42. Thompson M, Bywaters EG. Unilateral rheumatoid arthritis following hemiplegia. Ann Rheum Dis 1962; 21: 370–377.
43. Yaghmai I, Rooholamini SM, Faunce HF. Unilateral rheumatoid arthritis: protective effect of neurologic deficits. AJR Am J Roentgenol 1977; 128: 299–301.
44. Arruda AP, Milanski M, Velloso LA. Hypothalamic inflammation and thermogenesis: the brown adipose tissue connection. J Bioenerg Biomembr 2011; 43: 53–58.
45. Paton JF, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev 2009; 33: 89–94.
46. Schwartz PJ. Vagal stimulation for heart failure. Curr Opin Cardiol 2011; 26: 51–54.
47. Schwartz PJ, De Ferrari GM. Vagal stimulation for heart failure: background and first in-man study. Heart Rhythm 2009; 6: S76–S81.
48. Schwartz PJ, De Ferrari GM, Sanzo A et al. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 2008; 10:884–891.
49. Schwartz PJ. Vagal stimulation for heart diseases: from animals to men. – An example of translational cardiology. Circ J 2010; 75: 20–27.
50. Wyss JM, Carlson SH. The role of the nervous system in hypertension. Curr Hypertens Rep 2001; 3: 255–262.
51. Schlaich MP, Sobotka PA, Krum H et al. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 2009; 54: 1195–1201.
52. Krack P, Hariz MI, Baunez C et al. Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 2010; 33: 474–484.
53. Sani S, Jobe K, Smith A et al. Deep brain stimulation for treatment of obesity in rats. J Neurosurg 2007; 107: 809–813.
54. Pisapia JM, Halpern CH, Williams NN et al. Deep brain stimulation compared with bariatric surgery for the treatment of morbid obesity: a decision analysis study. Neurosurg Focus 2010; 29: E15.
55. Gourine A, Bondar SI, Spyer KM et al. Beneficial effect of the central nervous system beta-adrenoceptor blockade on the failing heart. Circ Res 2008; 102: 633-636. 56. Felder RB, Yu Y, Zhang ZH et al. Pharmacological treatment for heart failure: a view from the brain. Clin Pharmacol Ther 2009; 86: 216–220.
57. Li M, Zheng C, Sato T et al. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004; 109: 120-124.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Internal Medicine
2011 Issue 10
Most read in this issue
- Normal pulmonary circulation pressure values in healthy subjects at rest and during exercise
- Treatment of acute exacerbation of the obstructive pulmonary disease with hospitalization at an Intensive Care Unit.
- Resynchronization therapy for heart failure – still many question marks
- Prognostic markers in chronic lymphocytic leukemia