#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Natural antiglucocorticoids


Authors: R. Hampl;  K. Vondra
Authors‘ workplace: Endokrinologický ústav, Praha, ředitel doc. MUDr. Vojtěch Hainer, CSc.
Published in: Vnitř Lék 2006; 52(10): 973-978
Category: Review

Overview

Dehydroepiandrosterone, as a sulfate after cholesterol the most abundant circulating steroid displays a number of remarkable actions, especially on immune system, where it counteracts immunosuppressive effects of glucocorticoids. Recently it has been found that in some instances the locally active agents are 7-oxygenated metabolites of this steroid, so far believed to be only degradation products. In the survey so far known effects of dehydroepaindrosterone and its metabolites are summarized on cytokine production, activation of apoptosis, their influence on macrophage migration into affected peripheral tissues, their plausible effect on angiogenesis, effects of inflammatory mediators-metabolites of arachidonic acid, and their role in the mechanism of oxidative stress. Where known, the molecular mechanisms are mentioned, staying behind these events.

Key words:
endogenic antiglucocorticoids - dehydroepiandrosterone - metabolites


Sources

1. Tuckermann JP, Kleiman A, McPherson KG et al. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 2005; 42: 41-104.

2. Purohit A, Reed MJ. Regulation of estrogen synthesis in postmenopausal women. Steroids 2002; 67: 979-983.

3. Chikanza IC. Mechanism of corticosteroid resistance in rheumatoid arthritis: a putative route for the corticosteroid receptor beta isoform. Ann N Y Acad Sci 2002; 966: 39-48.

4. Taguchi T, Takao T, Iwasaki M et al. Suppressive effects of dehydroepiandrosterone and the nuclear factor-kappa B inhibitor parthenolide on corticotroph tumor cell growth and function in vitro and in vivo. J Endocrinol 2006; 188: 321-331.

5. Distelhorst CW. Recent insights into the mechanism of glucocorticoid-induced apoptosis. Cell Death and Differentiation 2002; 9: 6-19.

6. Wang D, Muller N, McPherson KG et al. Glucocorticoid engage different signal transduction pathways to iduce apoptosis in thymocytes and mature T cells. J Immunol 2006; 176: 1695-1702.

7. Kalimi M, Shafagoj Y, Loria R et al. Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Molec Cell Biochem 1994; 131: 99-104.

8. Charalampopoulos I, Alexaki VI, Lazaridis I et al. G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone. FASEB J 2006; 20: 577-579.

9. Liang J, Yao G, Yang L et al. Dehydroepiandrosterone induces apoptosis of thymocyte through Fas/Fas-L pathway. Int Immunopharmacol 2004; 4: 1467-1475.

10. Jiang Y, Miyazaki T, Honda A et al. Apoptosis and inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway in the anti-proliferative actions of dehydroepiandrosterone. J Gastroenterol 2005; 40: 490-497.

11. Morfin R, Courchay G. Pregnenolone and dehydroepiandrosterone as precursors of native 7-hydroxylated metabolites which increase the immune response in mice. J Steroid Biochem Mol Biol 1994; 50: 91-100.

12. Lafaye P, Chmielewski V, Nato F et al. The 7α-hydroxysteroids produced in human tonsils enhance the immune response to tetanus toxoid and Bordetella pertusis antigens. Biochem Biophys Acta 1999; 1472: 222-231.

13. Chmielewski V, Drupt F, Morfin R. Dexamethasone induced apoptosis of mouse thymocytes: prevention by native 7α-hydroxysteroids. Immunol Cell Biol 2000; 78: 238-246.

14. Small GR, Hadoke PW, Sharif I et al. Preventing local regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 enhances angiogenesis. Proc Natl Acad Sci (USA) 2001; 102: 12165-12170.

15. Robinzon B, Michael KK, Ripp SL et al. Glucocorticoids inhibit interconversion of 7-hydroxy and 7-oxo metabolites of dehydroepiandrosterone: a role for 11β-hydroxysteroid dehydrogenases? Arch Biochem Biophys 2001; 389: 278-287.

16. Hampl R, Lapčík O, Hill M et al. 7-Hydroxydehydroepiandrosterone - a natural antiglucocorticoid and a candidate for steroid replacement therapy. Physiol Res 2000; 49(Suppl 1): S107-S112.

17. Hampl R, Stárka L, Janský L. Steroids and thermogenesis (minireview). Physiol Res 2006; 55: 123-131.

18. Baus E, Andris F, Dewit J et al. Dexamethasone inhibits invasion of murine T cells through cultured fibroblastic monolayers. Int Immunopharmacol 2001; 1: 785-793.

19. Donn RP, Ray DW. Macrophage migration inhibitory factor: mollecular, cellular and genetic aspects of a key endocrine molecule. J Endocrinol 2004; 182: 1-9.

20. Rahman I. Oxidative stress and gene transcription in asthma and chronic obstructive pilmonay disease: antioxidant therapeutic targets. Curr Drug Targets Inflamm Allergy 2002; 1: 292-315.

21. Adcock IM, Caramori G, Ito K. New insights into the molecular mechanism of corticoids action. Curr Drug Targets 2006; 7: 649-660.

22. Ozmen I. Evaluation of effect of some corticosteroids on glucose-6-phosphate dehydrogenase and comparative study of antioxidant enzyme activities. J Enzyme Inhib Med Chem 2005; 20: 19-24.

23. Schwartz AG, Paschko LL. Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Res Rev 2004; 3: 171-187.

24. Bhaskar L, Ramakrishna BS, Balasubramanian KA. Colonic mucosal antioxidant enzymes and lipid peroxide levels in normal subjects and patients with ulcerative colitis. J Gastroenterol Hepatol 1995; 10: 140-143.

25. Tuzun A, Erdil A, Inal V et al. Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 2002; 35: 569-572.

26. Pélissier MA, Muller C, Hill M et al. Protection against dextran sodium sulfate-induced colitis by dehydroepiandrosterone and 7α-hydroxy-dehydroepiandrosterone in the rat. Steroids 2006; 71: 240-248.

27. Saitoh H, Hirato K, Tahara R et al. Enhancement of human phospholipase A2 activity by steroid-sulphate derived from the foeto-placental unit. Acta Endocrinol (Copenh) 1984; 107: 420-424.

28. Bičíková M, Kříž L, Mohapl M et al. Aminothiols in human brain tumors Clin Chem Lab Med 2006; 44: 978-982.

Labels
Diabetology Endocrinology Internal medicine
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#