Comparison of invasive and non-invasive isolates of Neisseria meningitidis by whole genome sequencing, Czech Republic, 2005–2021
Authors:
M. Honskus 1,2; P. Křížová 1; Z. Okonji 1; M. Musílek 1; Kozáková
Authors‘ workplace:
Národní referenční laboratoř pro meningokokové nákazy, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha
1; 3. lékařská fakulta Univerzity Karlovy, Praha
2
Published in:
Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 2, s. 86-92
Category:
Original Papers
Overview
Aim: Whole genome sequencing (WGS) analysis of candidate virulence genes of epidemiologically and/or clinically related invasive and non-invasive isolates of Neisseria meningitidis from 2005–2021.
Material and Methods: Seventy-nine isolates were selected for analysis from three different categories: cases of invasive meningococcal disease (IMD) and their healthy contacts, different clinical specimens from the same IMD case, and different clinical specimens from the same IMD case and their healthy contacts. WGS was used to analyse sequence variability in candidate N. meningitidis virulence factor genes, with more than 250 loci studied.
Results: The frequency of sequence changes in the candidate N. meningitidis virulence factor genes of invasive and non-invasive isolates varied widely. The highest level of variability was observed in the pilus genes, especially pilE and pglA. Our study detected variability in the opacity protein A (opaA) gene in more than half of the isolates analysed, with the frequency of opaA gene changes reaching almost 70% in MenC isolates. Higher frequency of changes were also observed in the genes for capsule production, especially in those of the D+D’ capsular region.
Conclusions: The results obtained support the hypothesis that serogroup-specific genetic mechanisms are also involved in the pathogenicity of N. meningitidis. These data add to the body of knowledge necessary for the development of new effective IMD vaccines.
Keywords:
Neisseria meningitidis – whole genome sequencing –virulence factors – capsular genes – pilE – pglA – opaA
Sources
1. Caugant DA, Tzanakaki G, Kriz P. Lessons from meningococcal carriage studies. FEMS Microbiol Rev. 2007;31(1):52–63. Doi: 10.1111/j.1574-6976.2006.00052.x. PMID: 17233635.
2. Tan A, Hill DM, Harrison OB, et al. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep. 2016;6:21015. Doi: 10.1038/srep21015. PMID: 26867950.
3. Bårnes GK, Brynildsrud OB, Børud B, et al. Whole genome sequencing reveals within host genetic changes in paired meningococcal carriage isolates from Ethiopia. BMC Genomics, 2017;18:407. Doi: 10.1186/s12864-017-3806-3.
4. Claus H, Maiden MCJ, Maag R, et al. Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology (Reading). 2002;148(6):1813–1819. Doi: 10.1099/00221287-148-6-1813. PMID: 12055301.
5. Jones CH, Mohamed N, Rojas R, et al. Comparison of Phenotypic and Genotypic Approaches to Capsule Typing of Neisseria meningitidis by Use of Invasive and Carriage Isolate Collections. J. Clin. Microbiol., 2016;54(1):25–34. Doi: 10.1128/JCM.01447-15. PMID: 26311858.
6. Ren X, Eccles DA, Greig GA, et al. Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. mSystems, 2017;2(6):e00127–17. Doi: 10.1128/mSystems.00127-17. PMID: 29152586.
7. Joseph B, Schneiker-Bekel S, Schramm-Glück A, et al. Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol., 2010;192(20):5363–77. Doi: 10.1128/JB.00883-10. PMID: 20709895.
8. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U S A, 1998;95(6):3140–3145. Doi: 10.1073/pnas.95.6.3140. PMID: 9501229.
9. Brehony C, Jolley KA, Maiden MC. Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol. Rev., 2007;31(1):15–26. Doi: 10.1111/j.1574-6976.2006.00056.x. PMID: 17168997.
10. Jolley KA, Maiden MC. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era. Future Microbiol., 2014;9(5):623–630. Doi: 10.2217/fmb.14.24. PMID: 24957089.
11. Zerbino DR. Using the Velvet de novo assembler for shortread sequencing technologies. Curr. Protoc. Bioinformatics, 2010;11:Unit 11.5. Doi: 10.1002/0471250953.bi1105s31. PMID: 20836074.
12. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010;11:595. Doi: 10.1186/1471-2105-11-595. PMID: 21143983.
13. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res., 2018;3:124. Doi: 10.12688/wellcomeopenres.14826.1. PMID: 30345391.
14. Jennings MP, Virji M, Evans D, et al. Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol. Microbiol., 1998;29(4):975–984. Doi: 10.1046/j.1365-2958.1998.00962.x. PMID: 9767566.
15. Rytkönen A, Albiger B, Hansson-Palo P, et al. Neisseria meningitidis undergoes PilC phase variation and PilE sequence variation during invasive disease. J. Infect. Dis., 2004;189(3):402–409. Doi: 10.1086/381271. PMID: 14745697.
16. Sun X, Zhou H, Xu L, et al. Prevalence and genetic diversity of two adhesion-related genes, pilE and nadA, in Neisseria meningitidis in China. Epidemiol Infect. 2013;141(10):2163–2172. Doi: 10.1017/S0950268812002944. PMID: 23290624.
17. Carbonnelle E, Hill DJ, Morand P, et al. Meningococcal interactions with the host. Vaccine, 2009;27(Suppl 2):B78–89. Doi: 10.1016/j.vaccine.2009.04.069. PMID: 19481311.
18. Power PM, Roddam LF, Rutter K, et al. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol. 2003;49(3):833–847. Doi: 10.1046/j.1365-2958.2003.03602.x. PMID: 12864863.
19. Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol. Rev., 2011;35(3):498–514. Doi: 10.1111/j.1574-6976.2010.00260.x. PMID: 21204865.
20. Gasparini R, Amicizia D, Lai PL, et al. Neisseria meningitidis, pathogenetic mechanisms to overcome the human immune defences. J. Prev. Med. Hyg., 2012;53(2):50–55. PMID: 23240160.
21. Sadarangani M, Hoe JC, Callaghan MJ, et al. Construction of Opa-positive and Opa-negative strains of Neisseria meningitidis to evaluate a novel meningococcal vaccine. PLoS One, 2012;7(12):e51045. Doi: 10.1371/journal.pone.0051045. PMID: 23251421.
22. Claus H, Frosch M, Vogel U. Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signature-tagged transposons. Mol. Gen. Genet., 1998;259(4):363–371. Doi: 10.1007/s004380050823. PMID: 9790590.
23. Linz B, Schenker M, Zhu P, et al. Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol Microbiol. 2000;36(5):1049–1058. Doi: 10.1046/j.1365-2958.2000.01932.x. PMID: 10844690.
24. Tzeng YL, Swartley JS, Miller YK, et al. Transcriptional regulation of divergent capsule biosynthesis and transport operon promoters in serogroup B Neisseria meningitidis. Infect Immun., 2001;69(4):2502–2511. Doi: 10.1128/IAI.69.4.2502-2511.2001. PMID: 11254613.
25. Tzeng YL, Thomas J, Stephens DS. Regulation of capsule in Neisseria meningitidis. Crit. Rev. Microbiol., 2016;42(5):759–772. Doi: 10.3109/1040841X.2015.1022507. PMID: 26089023.
26. Talà A, Cogli L, De Stefano M, et al. Serogroup-specific interaction of Neisseria meningitidis capsular polysaccharide with host cell microtubules and effects on tubulin polymerization. Infect Immun., 2014;82(1):265–274. Doi: 10.1128/IAI.00501-13. PMID: 24166951.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2023 Issue 2
Most read in this issue
- Selected aspects of mortality in Czechia and Slovakia in the pandemic year 2020
- A word on the microbiome: considerations about the history, current state, and terminology of an emerging discipline
- The influence of meteorological factors on the risk of tick-borne encephalitis infection
- Comparison of invasive and non-invasive isolates of Neisseria meningitidis by whole genome sequencing, Czech Republic, 2005–2021