Epidemiology, risk factors and possibilities for the prevention of acute leukaemia
Authors:
S. Zatloukalová 1; K. Azeem 1; M. Čerňan 2; O. Holý 1
Authors‘ workplace:
Ústav veřejného zdravotnictví, Lékařská fakulta, Univerzita Palackého v Olomouci
1; Hemato-onkologická klinika, Fakultní nemocnice Olomouc
2
Published in:
Epidemiol. Mikrobiol. Imunol. 70, 2021, č. 3, s. 208-220
Category:
Review Article
Overview
Acute leukaemias are malignant diseases of haematopoiesis, traditionally classified according to the affected cell line as acute lymphoblastic and acute myelogenous leukaemia. In terms of incidence, acute leukaemias are rare diseases – in the Czech Republic, only 2–3 new acute myelogenous leukaemia cases/100 000 population are diagnosed annually and less than 1 new case of acute lymphoblastic leukaemia/100 000 residents. The causes of acute leukaemias are still poorly understood. The established risk factors are age, ionizing radiation or Down’s syndrome. Moreover, a number of potential risk factors have been described to play a role in development of acute leukaemias and to multiply the risk, such as physical factors, chemicals, genetic and familial predispositions or other diseases. The presented review summarizes the knowledge of the aetiology of acute leukaemias published since 2000. It describes their epidemiological characteristics and risk factors and outlines the possibilities for their prevention.
Keywords:
acute lymphoblastic leukaemia – acute myelogenous leukaemia – risk factors – prevention
Sources
1. Penka M, Tesařová E, Blatný J, et al. Hematologie a transfuzní lékařství I: Hematologie. Praha: Grada Publishing; 2011. ISBN 978- 80-247-3459-0.
2. Šálek C. Diagnostika a léčba akutních leukemií. Int Med Praxi, 2012;14(10):366–372.
3. Arber DA, Orazi A, Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016;127(20):2391–2405.
4. Zuna J, Žaliová M. Etiologie dětských ALL a AML, molekulární genetika a minimální reziduální nemoc. Českoslov Pediatr, 2015;70(2):70–84.
5. Schottenfeld D, Fraumeni J. Schottenfeld and Fraumeni Cancer Epidemiology and Prevention. 4. vyd. Oxford: Oxford University Press; 2018.
6. Ilhan G, Karakus S, Andic N. Risk Factors and Primary Prevention of Acute Leukemia. Asian Pac J Cancer Prev, 2006;7:515–517.
7. National Cancer Institute: Surveillance, Epidemiology and Result Program. Cancer Stat Facts: Leukemia — Acute Myeloid Leukemia (AML) [online]. 2020 [cit. 2020-12-01]. Dostupné na www: .
8. Visser O, Trama A, Maynadié M, et al. Incidence, survival and prevalence of myeloid malignancies in Europe. Eur J Cancer, 2012;48(17):3257–3266.
9. Dušek L, Mužík J, Kubásek M, et al. SVOD – Epidemiologie zhoubných nádorů v České republice [online]. 2005 [cit. 2020- 03-20]. Dostupné na www: .
10. Ústav zdravotnických informací a statistiky České republiky. Epidemiologie hematologických malignit v České republice [online]. 2015-09 [cit. 2020-10-18]. Dostupné na www: https:// reporting.uzis.cz/cr/res/file/reporty/060118-CR-epid-hematoonko. pdf.
11. Webový portál epidemiologie zhoubných nádorů v České republice. Report diagnózy: C92,0 – Akutní myeloidní leukémie [online]. 2020 [cit. 2020-02-18]. Dostupné na www: http://www. svod.cz/.
12. Schiffer CA, Gurbuxani S, Larson RA, et al. Clinical manifestations, pathologic features, and diagnosis of acute myeloid leukemia. UpToDate [online]. 2019 [cit. 2020-03-11]. Dostupné na www: https://www.uptodate.com/contents/clinical-manifestations- pathologicfeatures-and-diagnosis-of-acute-myeloid-leukemia.
13. Šustková Z, Semerád L, Procházková J, et al. Charakteristika a výsledky léčby pacientů s akutní myeloidní leukemií ≥ 60 let – data z databáze CELL DATOOL AML. Transfuze Hematol Dnes, 2019;25(4):340–348.
14. Deschler B, Lübbert M. Acute myeloid leukemia: Epidemiology and etiology. Cancer, 2006;107(9):2099–2107.
15. Doubek M, Mayer J (ed.). Léčebné postupy v hematologii: Doporučení České hematologické společnosti České lékařské společnosti Jana Evangelisty Purkyně. 2. akt. a dopl. vyd. Nové Město nad Metují: ČHS ČLS JEP; 2016.
16. Babushok DV, Bessler M. Genetic predisposition syndromes: when should they be considered in the work-up of MDS? Best Pract Res Clin Haematol, 2015;28(1):55–68.
17. Hahn CN, Chong EC, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet, 2011;43(10):1012–1019.
18. Churpek Je, Lorenz R, Nedumgottil S, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma, 2013;54(1):28– 35.
19. Nickels EM, Soodalter J, Churpek J, et al. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol, 2013;4(4):254– 269.
20. Pan LL, Huang YM, Wang M, et al. Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet, 2015;23(2):218–223.
21. Saliba J, Saint-Martin C, di Stefano A, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet, 2015;47(10):1131–1140.
22. Husnain M, Wang T, Valdes M, et al. Multiple Myeloma in a Patient with ANKRD26-Related Thrombocytopenia Successfully Treated with Combination Therapy and Autologous Stem Cell Transplant. Case Rep Hematol, 2019;(2):9357572.
23. Schudrowitz N, Takagi S, Wessel GM, et al. Germline factor DDX4 functions in blood-derived cancer cell phenotypes. Cancer Sci, 2017;108(8):1612–1619.
24. Hock H, Shimamura A. ETV6 in Hematopoiesis and Leukemia Predisposition [online]. Semin Hematol, 2017;54(2):98–104.
25. O‘Brien G, Zyla J, Manola KN, et al. Identification of two novel mutations in human acute myeloid leukemia cases. Leuk Lymphoma, 2020;14:1–8.
26. Caughey RW, Michels KB. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer, 2009;124(11):2658–2670.
27. O‘Neill KA, Murphy MF, Bunch KJ, et al. Infant birthweight and risk of childhood cancer: international population-based case control studies of 40 000 cases. Int J Epidemiol, 2015;44(1):153– 168.
28. Panagopoulou P, Skalkidou A, Marcotte E, et al. Parental age and the risk of childhood acute myeloid leukemia: results from the Childhood Leukemia International Consortium. Cancer Epidemiol, 2019;59:158–165.
29. Bailey HD, Fritschi L, Infante-Rivard C, et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Int J Cancer, 2014;135(9):2157–2172.
30. Bailey HD, Infante-Rivard C, Metayer C, et al. Home pesticide exposures and risk of childhood leukemia: Findings from the childhood leukemia international consortium. Int J Cancer, 2015;137(11):2644–2663.
31. Karalexi MA, Dessypris N, Thomopoulos TP, et al. Parental alcohol consumption and risk of leukemia in the offspring: a systematic review and meta-analysis. Eur J Cancer Prev, 2017;26(5):433–441.
32. Kaatsch P, Scheidemann-Wesp U, Schüz J. Maternal use of antibiotics and cancer in the offspring: results of a case–control study in Germany. Cancer Causes Control, 2010;21:1335–1345.
33. Little MP, Wakeford R, Borrego D, et al. Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematol, 2018;5(8):e346–e358.
34. Weiss HA, Darby SC, Fearn T, et al. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res, 1995;142(1):1– 11.
35. Laurent O, Ancelet S, Richardson DB, et al. Potential impacts of radon, terrestrial gamma and cosmic rays on childhood leukemia in France: a quantitative risk assessment. Radiat Environ Biophys, 2013;52(2):195–209.
36. Demoury C, Marquant F, Ielsch G, et al. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009. Environ Health Perspect, 2017;125(4):714–720.
37. Szotkowski T, Čerňan M, Hubáček M, et al. Akutní myeloidní leukemie po předchozí protinádorové léčbě. Onkologie, 2017;11(3):115–120.
38. Heuser M. Therapy-related myeloid neoplasms: does knowing the origin help to guide treatment? Hematology Am Soc Hematol Educ, 2016;(1):24–32.
39. Schüz J, Erdmann F. Environmental Exposure and Risk of Childhood Leukemia: An Overview. Arch Med Res, 2016;47(8):607– 614.
40. Poynter JN, Richardson M, Roesler M, et al. Chemical exposures and risk of acute myeloid leukemia and myelodysplastic syndromes in a population-based study. Int J Cancer, 2017;140(1):23–33.
41. Shallis RM, Weiss JJ, Deziel NC, et al. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev, 2020;22:100760.
42. Houot J, Marquant F, Goujon S, et al. Residential Proximity to Heavy-Traffic Roads, Benzene Exposure, and Childhood Leukemia – The GEOCAP Study, 2002–2007. Am J Epidemiol, 2015;182(8):685–693.
43. Vinceti M, Rothman KJ, Crespi CM, et al. Leukemia risk in children exposed to benzene and PM10 from vehicular traffic: a case-control study in an Italian population. Eur J Epidemiol, 2012;27(10):781–790.
44. Janitz AE, Campbell JE, Magzamen S, et al. Benzene and childhood acute leukemia in Oklahoma. Environ Res, 2017;158:167– 173.
45. Shallis RM, Weiss JJ, Deziel NC, et al. A clandestine culprit with critical consequences: Benzene and acute myeloid leukemia. Blood Rev, 2020;22:100736.
46. Zhang L, Tang X, Rothman N, et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomarkers Prev, 2010;19(1):80–88.
47. Allegra A, Spatari G, Mattioli S, et al. Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina (Kaunas), 2019;55(10):638.
48. Scélo G, Metayer C, Zhang L, et al. Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. Environ Health Perspect, 2009;117(1):133–139.
49. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer, 2017;17(9):513–527.
50. Fircanis S, Merriam P, Khan N, et al. The relation between cigarette smoking and risk of acute myeloid leukemia: An updated meta-analysis of epidemiological studies. Am J Hematol, 2014;89(8):E125–E32.
51. Tong HC, Yin X, Yu M, et al. A Meta-Analysis of the Relationship between Cigarette Smoking and Incidence of Myelodysplastic Syndromes. PLoS ONE, 2013;8(6):e67537.
52. Ugai T, Matsuo K, Oze I, et al. Smoking and subsequent risk of acute myeloid leukaemia: A pooled analysis of 9 cohort studies in Japan. Hematol Oncol, 2018;36(1):262–268.
53. Ma X, Lim U, Park Y, et al. Obesity, lifestyle factors, and risk of myelodysplastic syndromes in a large US cohort. Am Journal Epidemiol, 2009;169(12):1492–1499.
54. Yamamura Y, Oum R, Elhor GKY, et al. Dietary intake of vegetables, fruits, and meats/beans as potential risk factors of acute myeloid leukemia: A texas case-control study. Nutr Cancer, 2013;65(8):1132–1140.
55. Karmali R, Dalovisio A, Borgia JA, et al. All in the family: Clueing into the link between metabolic syndrome and hematologic malignancies. Blood Rev, 2015;29(2):71–80.
56. Saberi HF, Romieu I, Gallo V, et al. Anthropometric characteristics and risk of lymphoid and myeloid leukemia in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control, 2013;24(3):427–438.
57. Shiels M, Engels EA. Increased risk of histologically defined cancer subtypes in human immunodeficiency virus-infected individuals: Clues for possible immunosuppressionrelated or infectious etiology. Cancer, 2012;118(19):4869–4876.
58. Vondráková J. Myelodysplastický syndrom, diagnostika a léčba. Interní Med, 2010;12(11):535–539. 59. Bhatt VR. Leukemic transformation in essential thrombocythemia. Future Oncol, 2014;10(16):2593–2602.
60. Manivannan P, Purohit A, Somasundaram V, et al. Leukemic Transformation of Severe Aplastic Anemia Following Matched Allogenic Stem Cell Transplantation, Transplanted Again in CR 1. Indian J Hematol Blood Transfus, 2016;32(Suppl 1):223–227.
61. Perdigones N, Perin JC, Schiano I, et al. Clonal hematopoiesis in patients with dyskeratosis congenita. Am J Hematol, 2016;91(12):1227–1233.
62. Meyer S, Neitzel H, Tönnies H. Chromosomal aberrations associated with clonal evolution and leukemic transformation in fanconi anemia: clinical and biological implications. Anemia, 2012;2012:349837.
63. Link DC. Mechanisms of leukemic transformation in congenital neutropenia. Curr Opin Hematol, 2019;26(1):34–40.
64. Starý J. Akutní leukémie u dětí. Onkologie, 2010;4(2):120–124.
65. National Cancer Institute: Surveillance, Epidemiology and Result Program. Cancer Stat Facts: Leukemia — Acute Lymphocytic Leukemia (ALL) [online]. 2020 [cit. 2020-12-01]. Dostupné na www: .
66. Hoelzer D, Bassan R, Dombret H, et al. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2016;27(Suppl5): v69–v82.
67. Abiri B, Kelishadi R, Sadeghi H, et al. Effects of Maternal Diet During Pregnancy on the Risk of Childhood Acute Lymphoblastic Leukemia: A Systematic Review. Nutr Cancer, 2016;68(7):1065–1072.
68. Lim JY, Bhatia S, Robison LL, et al. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer, 2014;120(7):955–962.
69. Bhatia S, Sather HN, Heerema NA, et al. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood, 2002;100(6):1957–1964.
70. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood, 2010;115(26):5312–5321.
71. Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet, 2013;45(12):1494– 1498.
72. Mihál V. Leukémie. In: Bajčiová V, Tomášek J, Štěrba J et al. Nádory adolescentů a mladých dospělých. 1. vyd. Praha: Grada Publishing; 2011. s. 43–72.
73. Webový portál epidemiologie zhoubných nádorů v České republice. Report diagnózy: C91.0 – Akutní lymfoblastická leukémie [online]. 2020 [vid. 2020-02-18]. Dostupné na www: http://www.svod.cz/
74. Shahjahani M, Norozi F, Zadeh A, et al. The role of Pax5 in leukemia: diagnosis and prognosis significance. Med Oncol, 2015;32(1):360.
75. Ross RA, Smoley SA, Williamson CM, et al. Characterization of TCF3 rearrangements in pediatric B-lymphoblastic leukemia/ lymphoma by mate-pair sequencing (MPseq) identifies complex genomic rearrangements and a novel TCF3/TEF gene fusion. Blood Cancer J, 2019;9(10):1–8.
76. Ramírez-Komo JA, Delaney MA, Straign D, et al. Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1+/–Bcl-xLTg mice. Oncogenesis, 2017;6(7):e355–e355.
77. Guo X, Zhang R, Liu J, et al. Characterization of LEF1 high expression and novel mutations in adult acute lymphoblastic leukemia. PLoS ONE, 2015;10(5).
78. Payne KJ, Dovat S. Ikaros and tumor suppression in acute lymphoblastic leukemia. Crit Rev Oncog, 2011;16(1–2):3–12.
79. Sergentanis TN, Thomopoulos TP, Gialamas SP, et al. Risk for childhood leukemia associated with maternal and paternal age. Eur J Epidemiol, 2015;30(12):1229–1261.
80. Karalexi MA, Dessypris N, Skalkidou A, et al. Maternal fetal loss history and increased acute leukemia subtype risk in subsequent offspring: a systematic review and meta-analysis. Cancer Causes Control, 2017;28(6):599–624.
81. Nybo Andersen AM, Urhoj SK. Is advanced paternal age a health risk for the offspring? Fertil Steril, 2017;107(2):312– 318.
82. Marcotte EL, Thomopoulos TP, Infante-Rivard C, et al. Caesarean delivery and risk of childhood leukaemia: a pooled analysis from the Childhood Leukemia International Consortium (CLIC). Lancet Haematol, 2016;3(4):e176–e185.
83. Hjalgrim LL, Westergaard T, Rostgaard K, et al. Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol, 2003;158(8):724–735.
84. Kyriakopoulou A, Meimeti E, Moisoglou I, et al. Parental Occupational Exposures and Risk of Childhood Acute Leukemia. Mater Sociomed, 2018;30(3):209–214.
85. Walsh JM, Hehir MP, Robson MS, et al. Mode of delivery and outcomes by birth weight among spontaneous and induced singleton cephalic nulliparous labors. Int J Gynaecol Obstet, 2015;129(1):22–25.
86. Milne E, Greenop KR, Scott RJ, et al. Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol, 2012;175(1):43–53.
87. Baan R, Grosse Y, Straif K, et al. A review of human carcinogens – Part F: chemical agents and related occupations. Lancet Oncol, 2009;10(12):1143–1144.
88. Frederiksen LE, Erdmann F, Wesseling C, et al. Parental tobacco smoking and risk of childhood leukemia in Costa Rica: A population- based case-control study. Environ Res, 2020;180:108827.
89. Bailey HD, Metayer C, Milne E, et al. Home paint exposures and risk of childhood acute lymphoblastic leukemia: findings from the Childhood Leukemia International Consortium. Cancer Causes Control, 2015;26(9):1257–1270.
90. Francis SS, Wallace AD, Wendt GA, et al. In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood, 2017;129(12):1680–1684.
91. Petridou E, Ntouvelis E, Dessypris N, et al. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev, 2005;14(8):1935–1939.
92. Bailey HD, Miller M, Langridge A, et al. Maternal dietary intake of folate and vitamins B6 and B12 during pregnancy and the risk of childhood acute lymphoblastic leukemia. Nutr Cancer, 2012;64(7):1122–1130.
93. Karalexi MA, Dessypris N, Clavel J, et al. Coffee and tea consumption during pregnancy and risk of childhood acute myeloid leukemia: A Childhood Leukemia International Consortium (CLIC) study. Cancer Epidemiol, 2019;62:101581.
94. Alicandro G, Tavani A, La Vecchia C. Coffee and cancer risk: a summary overview. Eur J Cancer Prev, 2017;26(5):424–432.
95. Gradel KO, Kaerlev L. Antibiotic use from conception to diagnosis of child leukaemia as compared to the background population: A nested case-control study. Pediatr Blood Cancer, 2015;62(7):1155–1161.
96. Nikkilä A, Raitanen J, Lohi O, et al. Radiation exposure from computerized tomography and risk of childhood leukemia: Finnish register-based case-control study of childhood leukemia (FRECCLE). Haematologica, 2018;103(11):1873–1880.
97. Schüz J, Ahlbom A. Exposure to electromagnetic fields and the risk of childhood leukaemia: a review. Radiat Prot Dosimetry, 2008;132(2):202–211.
98. Kabuto M, Nitta H, Yamamoto S, et al. Childhood leukemia and magnetic fields in Japan: a case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan. Int J Cancer, 2006;119(3):643–650.
99. Draper G, Vincent T, Kroll ME, et al. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. BMJ, 2005;330(7503):1290.
100. Schüz J, Svendsen AL, Linet MS, et al. Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis. Am J Epidemiol, 2007;166(3):263–269.
101. Raaschou-Nielsen O, Andersen CE, Andersen HP, et al. Domestic radon and childhood cancer in Denmark. Epidemiol, 2008;19(4):536–543.
102. Andersen EC, Ulbak K, Damkjær A, et al. Radon i danske boliger: Kortlægning af lands-, amts- og kommuneværdier. Herlev: Statens Institut for Strålehygiejne: 2001.
103. Thygesen LC, Nielsen OJ, Johansen C. Trends in adult leukemia incidence and survival in Denmark, 1943–2003. Cancer Causes Control, 2009;20(9):1671–1680.
104. Hauri D, Spycher B, Huss A, et al. Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study. Environ Health Perspect, 2013;121(10):1239–1244.
105. Del Risco Kollerud R, Blaasaas KG, Claussen B. Risk of leukaemia or cancer in the central nervous system among children living in an area with high indoor radon concentrations: results from a cohort study in Norway. Br J Cancer, 2014;111(7):1413–1420.
106. Deziel NC, Rull RP, Colt JS, et al. Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia. Environ Res, 2014;133:388–395.
107. Ward MH, Colt JS, Metayer C, et al. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect, 2009;117(6):1007– 1013.
108. Mihál V. Může délka kojení nebo časná infekce v kojeneckém věku snížit riziko vzniku leukémie u dětí? Pediatr praxi, 2004;2:103–104.
109. Greaves MF. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia, 1988;2(2):120–125.
110. Kerr JR, Mattey DL. The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia. Rev Med Virol, 2015;25(3):133–155.
111. Marcotte EL, Ritz B, Cockburn M, et al. Exposure to infections and risk of leukemia in young children. Cancer Epidemiol Biomarkers Prev, 2014;23(7):1195–1203.
112. Lin JN, Lin CL, Lin MC, et al. Risk of leukaemia in children infected with enterovirus: a nationwide, retrospective, population- based, Taiwanese-registry, cohort study. Lancet Oncol, 2015;16(13):1335–1343.
113. Orsi L, Magnani C, Petridou ET, et al. Living on a farm, contact with farm animals and pets, and childhood acute lymphoblastic leukemia: pooled and meta-analyses from the Childhood Leukemia International Consortium. Cancer Med, 2018;7(6):2665– 2681.
114. Hishamuddin P. The association between acute lymphoblastic leukemia in children and Helicobacter pylori as the marker for sanitation. BMC Res Notes, 2012;5:345.
115. Cardwell CR, McKinney PA, Patterson CC, et al. Infections in early life and childhood leukaemia risk: a UK case-control study of general practitioner records. Br J Cancer, 2008;99(9):1529– 1533.
116. Rosenbaum PF, Buck GM, Brecher ML. Allergy and infectious disease histories and the risk of childhood acute lymphoblastic leukaemia. Paediatr Perinat Epidemiol, 2005;19(2):152–164.
117. Hwee J, Tait C, Sung L, et al. A systematic review and meta-analysis of the association between childhood infections and the risk of childhood acute lymphoblastic leukaemia. Br J Cancer, 2018;118(1):127–137.
118. Mezei G, Sudan M, Izraeli S, et a. Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol, 2014;38(5):479–489.
119. Český statistický úřad. Aktuální populační vývoj v kostce [online]. 2020 [cit. 2020-12-10]. Dostupné na www: .
120. Parner ET, Baron-Cohen S, Lauritsen MB, et al. Parental age and autism spectrum disorders. Ann Epidemiol, 2012;22(3):143– 150.
121. Thompson JA. Disentangling the roles of maternal and paternal age on birth prevalence of down syndrome and other chromosomal disorders using a Bayesian modeling approach. BMC Med Res Methodol, 2019;19(1):82.
122. Jensen CD, Block G, Buffler P, et al. Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control, 2004;15(6):559–570.
123. Kwan ML, Jensen CD, Block G, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep, 2009;124(4):503–514.
124. Ross JA, Potter JD, Reaman GH, et al. Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children‘s Cancer Group. Cancer Causes Control, 1996;7(6):581–590.
125. Rees-Punia E, Patel AV, Fallon EA, et al. Physical Activity, Sitting Time, and Risk of Myelodysplastic Syndromes, Acute Myeloid Leukemia, and Other Myeloid Malignancies. Cancer Epidemiol Biomarkers Prev, 2019;28(9):1489–1494.
126. Filippini T, Heck JE, Malagoli C, et al. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2015;33(1):36–66.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2021 Issue 3
Most read in this issue
- Epidemiology, risk factors and possibilities for the prevention of acute leukaemia
- What we know and still do not know about tick-borne encephalitis?
- Autoinflammatory process in the pathogenesis of generalized pustular psoriasis and perspectives of its targeted therapy
- If a vaccine against COVID-19 was available, would you like to be vaccinated? And are you vaccinated against flu and other diseases? A survey among university students during state of emergency