#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Surveillance of invasive meningococcal disease based on whole genome sequencing (WGS), Czech Republic, 2015


Authors: P. Křížová;  M. Honskus;  Z. Okonji;  M. Musílek;  J. Kozáková
Authors‘ workplace: Národní referenční laboratoř pro meningokokové nákazy, Centrum epidemiologie a mikrobiologie, Státní zdravotní ústav, Praha
Published in: Epidemiol. Mikrobiol. Imunol. 67, 2018, č. 2, s. 64-73
Category: Original Papers

Overview

Aim:
To test the potential of whole genome sequencing (WGS) for molecular surveillance of invasive meningococcal disease in the Czech Republic. To check the success of the new method in the identification of gene and protein variants and to compare the outcomes between WGS and conventional sequencing methods.

Material and methods:
WGS was carried out in a set of 20 N. meningitidis isolates from invasive meningococcal disease cases in the Czech Republic in 2015. WGS was performed using the Illumina MiSeq platform. The WGS data were processed by the Velvet de novo Assembler software, and the resultant genome contigs were submitted to the Neisseria PubMLST web database containing allelic and genomic data on strains of the genus Neisseria. The genomes were analysed and compared using the BIGSdb Genome Comparator, which is part of the PubMLST database. WGS data were compared at several levels of resolution: MLST (Multi Locus Sequence Typing), rMLST (ribosomal MLST), cgMLST (core genome MLST), and "all loci", i.e. all genes of N. meningitidis defined in the PubMLST database by 6 November 2017 (3028 loci). The WGS method was used to characterise in detail the genes of antigens involved in vaccines against N. meningitidis B.

Results:
The new WGS method provided detailed characteristics of N. meningitidis isolates, which improved the results obtained previously by conventional sequencing methods. High quality WGS data made it possible to identify novel alleles and novel sequence types that could not be recognized by conventional sequencing methods. The analysis of genetic diversity confirmed closer relatedness between isolates belonging to the same clonal complex. The most accurate information on genetic diversity of isolates was obtained by the comparison of WGS data at the cgMLST and "all loci" levels. Distant relatedness of three clonal complexes (cc32, cc35, and cc269) was found. WGS data also provided more accurate information on the coverage of isolates by MenB vaccines in comparison with conventional sequencing data.

Conclusions:
The WGS method showed a higher discrimination potential and allowed a more accurate determination of genetic characteristics of N. meningitidis. The integration of the WGS method in routine molecular surveillance of invasive meningococcal disease in the Czech Republic is desirable.

Keywords:
invasive meningococcal disease – genomic surveillance – whole genome sequencing (WGS)


Sources

1. Bambini S, Piet J, Muzzi A, et al. An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. PLoS One, 2013;8(5):e65043. DOI: 10.1371/journal.pone.0065043.

2. Bambini S, Chiara MD, Muzzi A, et al. Neisseria Adhesin A Variation and Revised Nomenclature Scheme. Clin Vaccine Immunol, 2014;21(7):966–971. DOI: 10.1128/CVI.00825-13.

3. Bratcher HB, Corton C, Jolley KA, et al. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BCM Genomics, 2014;15(1138). DOI: 10.1186/1471-2164-15-1138.

4. Brehony C, Hill DMC, Lucidarme J, et al. Meningococcal vaccine antigen diversity in global databases. Euro Surveill, 2016;20(49). DOI: 10.2807/1560-7917.ES.2015.20.49.30084.

5. Brehony C, Rodrigues ChMC, Borrow R, et al. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunization. Vaccine, 2016;34(39):4690–4697. DOI: 10.1016/j.vaccine.2016.08.015.

6. Harrison OB, Brueggemann AB, Caugant DA, et al. Molecular typing methods of outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology, 2011;157(8):2181–2195. DOI: 10.1099/mic.0.050518-0.

7. Hill DMC, Lucidarme J, Gray SJ, et al. Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observation cohort study. Lancet Infect Dis, 2015;15(12):1420–1428. DOI: 10.1016/S1473-3099(15)00267-4.

8. http://emgm.eu/emert

9. http://emgm.eu/events.shtml

10. https://pubmlst.org/neisseria/

11. https://tessy.ecdc.europa.eu/tessyweb

12. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010;11(595). DOI: 10.1186/1471-2105-11-595.

13. Jolley KA, Bliss CM, Bennett JS, et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology, 2012;158(4):1005–1015. DOI: 10.1099/mic.0.055459-0.

14. Jolley KA, Hill DMC, Bratcher HB, et al. Resolution of a Meningococcal Disease Outbreak from Whole-Genome Sequence Data with Rapid Web-Based Analysis Methods. J Clin Microbiol, 2012;50(9):3046–3053. DOI: 10.1128/JCM.01312-12.

15. Lucidarme J, Hill DMC, Bratcher HB, et al. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J Infect, 2015;71(5):544–552. DOI: 10.1016/j.jinf.2015.07.007.

16. Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998;95(6):3140–3145.

17. Masignani V, Comanducci M, Giuliani MM, et al. Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotien GNA1870. J Exp Med, 2003;197(6):789–799. DOI: 10.1084/jem.20021911.

18. McNeil LK, Zagursky RJ, Lin SL, et al. Role of Factor H Binding Protein in Neisseria meningitidis Virulence and Its Potential as a Vaccine Candidate To Broadly Protect against Meningococcal Disease. Microbiol Mol Biol Rev, 2013;77(2):234–252. DOI: 10.1128/MMBR.00056-12.

19. Mowlaboccus S, Perkins TT, Smith H, et al. Temporal Changes in BEXSERO® Antigen Sequence Type Associated with Genetic Lineages of Neisseria meningitidis over a 15-Year Period in Western Australia. PLoS One, 2016;11(6):e0158315. DOI:10.1371/journal.pone.0158345.

20. Nissen MD, Marshall HS, Richmond PC, et al. A Randomized, Controlled, Phase ½ Trial of a Neisseria meningitidis Serogroup B Bivalent rLP2086 Vaccine in Healthy Children and Adolescents. Pediatr Infect Dis J, 2013;32(4):364–371. DOI:10.1097/INF.0b013e31827b0d24.

21. Revez J, Espinosa L, Albiger B, et al. Survey on the Use of Whole-Genome Sequencing for Infectious Diseases Surveillance: Rapid Expansion of European National Capacities, 2015-2016. Front Public Health, 2017;5:347. DOI: 10.3389/fpubh.2017.00347.

22. Vacková Z, Křížová P, Jandová Z, et al. Možnosti implementace sekvenace celého genomu (WGS) Neisseria meningitidis do molekulární surveillance invazivního meningokokového onemocnění v České republice. Epidemiol Mikrobiol Imunol, 2017;66(1):50–52.

23. Vernikos G, Medini D. Bexsero® chronicle. Pathog Glob Health, 2014;108(7):305–316. DOI: 10.1179/2047773214Y.0000000162.

24. Whittaker R, Dias JG, Ramliden M, et al. The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004-2014. Vaccine, 2017;35(16):2034–2041. DOI: 10.1016/j.vaccine.2017.03.007.

25. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics, 2010;11(11.5). DOI: 10.1002/0471250953.bi1105s31.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#