#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Non-specific immunotherapy inhibits angiogenesis – results of the monitoring of serum levels of vascular endothelial growth factor and matrix metalloproteinase 8 in patients with malignant melanoma receiving adjuvant high-dose interferon therapy


Authors: J. Prošvicová 1;  J. Grim 2;  J. Kopecký 2;  P. Priester 2;  I. Slánská 2;  P. Trojanová 2;  A. Paulík 2;  V. Jílková 2;  S. Filip 2;  Š. Lukešová 1,3;  P. Prošvic 1;  J. Knížek 4;  C. Andrýs 5
Authors‘ workplace: Onkologické oddělení, Oblastní nemocnice Náchod 1;  Klinika onkologie a radioterapie, Fakultní nemocnice Hradec Králové 2;  Ústav klinické mikrobiologie, Lékařská fakulta v Hradci Králové, Univerzita Karlova 3;  Ústav biofyziky a biostatistiky, Lékařská fakulta v Hradci Králové, Univerzita Karlova 4;  Oddělení klinické imunologie, Fakultní nemocnice Hradec Králové 5
Published in: Epidemiol. Mikrobiol. Imunol. 66, 2017, č. 1, s. 15-23
Category: Original Papers

Overview

Objective:
Interestingly, evidence is currently emerging that the activation of angiogenesis leads to immunomodulatory/immunosuppressive effects both at the local and systemic levels. These are very complex and interconnected processes. In this study, our aim was to establish interferon alpha-2b as an anti-angiogenic agent and show the complexity of angiogenesis and immunomodulation through the serum levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 8 (MMP-8) in high-risk resected malignant melanoma before and after adjuvant therapy with high-dose interferon alpha-2b (HDI). Clinical outcomes of patients were also evaluated.

Material and methods:
We prospectively measured the serum levels of VEGF and MMP-8 by ELISA in 29 patients with high-risk resected malignant melanoma receiving adjuvant HDI. Blood samples were collected before and within one week after the treatment.

Results:
To see the results clearly, we divided our patients into two groups. The first group of patients whose VEGF serum level decreased after HDI (66%) showed long-term complete remission. The mean VEGF serum level in these patients decreased from 779.4 pg/ml to 446.2 pg/ml. This downward trend in VEGF was statistically significant. The second group of patients who did not show a decrease in VEGF serum level after HDI (34%) had no clinical benefit from the treatment. The mean VEGF serum levels in group 2 patients were 408 pg/ml before the treatment and 500 pg/ml after HDI. Results for MMP-8 were ambivalent.

Conclusions:
Non-specific immunotherapy with interferons reduces angiogenesis. Our results are in line with the current view of the interconnection and complexity of angiogenesis and immunomodulation/immunosuppression. Non-specific immunotherapy with interferons disrupts the immunosup-pressive effect of the angiogenesis on the development of immune response against tumours and supports anti-tumour response in both direct and indirect way. The interference of HDI with the activation of angiogenesis and tumour progression could explain good clinical outcomes of patients with a decrease in serum VEGF. The outcomes of MMP-8 are inconclusive, its role remain unclear, and MMP-8 does not seem to function as a tumour suppressor.

KEYWORDS:
angiogenesis – immunomodulation – interferon alpha-2b – adjuvant therapy – malignant melanoma


Sources

1. Voron T, Marcheteau E, Pernot S, Colussi O, Tartour E, Taieb J, Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol, 2014;4:70. doi: 10.3389/fonc.2014.00070.

2. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996;86:353–364.

3. Bayko L, Rak J, Man S, Bicknell R, Ferrara N, Kerbel RS. The dormant in vivo phenotype of early stage primary human melanoma: termination by overexpression of vascular endothelial growth factor. Angiogenesis, 1998;2(3):203–217.

4. Erhard H, Rietveld FJ, Van Altena MC, Brockner EB, Ruiter DJ, De Waal RM. Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis. Melanoma Res, 1997;7 Suppl 2:S19–26.

5. Rajabi P, Neshat A, Mokhtari MA, Eftekhari M, Tavakoli P. The role of VEGF in melanoma progression. J Res Med Sci, 2012;17(6):534–539.

6. Bates RC, Goldsmith JD, Bachelder RE, et al. Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol, 2003;13(19):1721–1727.

7. Huang H, Langenkamp E, Georganaki M, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J, 2015;29(1):227–238.

8. Tarhini AA. Neoadjuvant therapy for melanoma: a promising therapeutic approach and an ideal platform in drug development. Am Soc Clin Oncol Educ Book, 2015:e535–542.

9. Rakosy Z, Ecsedi S, Toth R, et al. Integrative genomics identifies gene signature associated with melanoma ulceration. PLoS One, 2013;8(1):e54958. doi: 10.1371/journal.pone.0054958. Epub 2013 Jan 30.

10. Eggermont AM, Suciu S, Rutkowski P, et al. Long term follow up of the EORTC 18952 trial of adjuvant therapy in resected stage IIB-III cutaneous melanoma patients comparing intermediate doses of interferon-alpha-2b (IFN) with observation: Ulceration of primary is key determinant for IFN-sensitivity. Eur J Cancer, 2016;55:111–121. doi: 10.1016/j.ejca.2015.11.014. Epub 2016 Jan 17.

11. Raig ET, Jones NB, Varker KA, et al. VEGF Secretion is Inhibited by Interferon-Alpha in Several Melanoma Cell Lines. J Interferon Cytokine Res, 2008;28(9):553–561.

12. Gutiérez-Fernández A, Fueyo A, Folgueras AR, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res, 2008;68(8):2755–2763.

13. Tarhini AA, Lin Y, Zahoor H, Shuai Y, et al. Pro-Inflammatory Cytokines Predict Relapse-Free Survival after One Month of Interferon-α but Not Observation in Intermediate Risk Melanoma Patients. PLoS One, 2015;10(7).

14. Mozzillo N, Ascierto P. Reduction of circulating regulatory T cells by intravenous high-dose interferon alfa-2b treatment in melanoma patients. Clin Exp Metastasis, 2012;29(7):801–805.

15. Demirkesen C, Buyukpinarbasili N, Ramazanoglu R, et al. The correlation of angiogenesis with metastasis in primary cutaneous melanoma: a comparative analysis of microvessel density, expression of vascular endothelial growth factor and basic fibroblastic growth factor. Pathology, 2006;(38):132–137.

16. Cascinu S, Staccioli MP, Gasparini G, et al. Expression of vascular endothelial growth factor can predict event-free survival in stage II colon cancer. Clin Cancer Res, 2000;6(7):2803–2807.

17. Seo HY, Park JM, Park KH, et al. Prognostic significance of serum vascular endothelial growth factor per platelet count in unresectable advanced gastric cancer patients. Jpn J Clin Oncol, 2010;40(12):1147–1153.

18. Niers TM, Richel DJ, Meijers JC, et al. Vascular Endothelial Growth Factor in the Circulation in Cancer Patients May Not Be a Relevant Biomarker. Plos One, 2011;6:e19873:1–6.

19. Yuan J, Zhou J, Dong Z, et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res, 2014;2(2):127–132.

20. Sabatino M, Kim-Schulze S, Panelli MC, et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol, 2009;27(16):2645–2652.

21. Crosby MB, Yang H, Gao W, et al. Serum vascular endothelial growth factor levels correlate with number and location of micrometastases in a murine model of uveal melanoma. Br J Ophtalmol, 2011;95:112–117.

22. Alabi AA, Suppiah A, Madden LA, et al. Preoperative serum levels of serum VEGF-C is associated with distant metastasis in colorectal cancer patients. Int J Colorectal Dis, 2009;24:269e74.

23. Rofstad EK, Halsor EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res, 2000;60(17):4932–4938.

24. Brychtova S, Bezdekova M, Brychta T, et al. The role of vascular endothelial growth factors and their receptors in malignant melanomas. Neoplasma, 2008;55(4):273–279.

25. Fontanini G, Lucchi M, Vignati S, et al. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst, 1997;89:881–886.

26. Mouawad R, Spano JP, Comperat E, et al. Tumoural expression and circulating level of VEGFR-3 (Flt-4) in metastatic melanoma patients: correlation with clinical parameters and outcome. Eur J Cancer, 2009;45(8):1407–1414.

27. Ascierto PA, Leonardi E, Ottaiano A, et al. Prognostic value of serum VEGF in melanoma patients: a pilot study. Anticancer Res, 2004;24:2455–2458.

28. Osella-Abate S, Quaglino P, Savoia P, et al. VEGF-165 serum levels and tyrosinase expression in melanoma patients: correlation with the clinical course. Melanoma Res, 2002;12(4):325–334.

29. Mehnert JM, Mccarthy MM, Jilaveanu L, et al. Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays. Hum Pathol, 2010;41(3):375–384.

30. Potti A, Moazzam N, Tendulkar K, et al. Immunohistochemical determination of vascular endothelial growth factor (VEGF) overexpression in malignant melanoma. Anticancer Res, 2003;23(5A):4023–4026.

31. Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol, 2001;19(4):1207–1225.

32. Vidal O, Metges JP, Elizalde I, et al. High preoperative serum vascular endothelial growth factor levels predict poor clinical outcome after curative resection of gastric cancer. Br J Surg, 2009;96:1443–1451.

33. Yurkovetsky ZR, Kirkwood JM, Edington HD, et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alfa2b. Clin Cancer Res, 2007;13(8):2422–2428.

34. Roland CL, Lynn KD, Toombs JE, et al. Cytokine Levels Correlate with Immune Cell Infiltration after Anti-VEGF Therapy in Preclinical Mouse Models of Breast Cancer. PlosOne, 2009;11(4): e7660:1–13.

35. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 2011;147(5):992–1009.

36. Kohrmann A, Kammerer U, Kapp M, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature. JBMC Cancer, 2009;9:188.

37. Lempinen M, Lyytinen I, Nordin A, et al. Prognostic value of serum MMP-8, -9 and TIMP-1 in patients with hepatocellular carcinoma. Ann Med, 2013;45(7):482–487.

38. Vayrynen JP, Vornanen J, Tervahartiala T, et al. Serum MMP-8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int J Cancer, 2012;131(4):E463–474.

39. Vihinen P, Tervahartiala T, Sorsa T, Hansson J, Bastholt L, Aamdal S, Stierner U, Pyrhonen S, Syrjanen K, Lundin J, Hernberg M. Benefit of adjuvant interferon alfa-2b (IFN-α) therapy in melanoma patients with high serum MMP-8 levels. Cancer Immunol Immunother, 2015;64(2):173–180.

40. Yuhui H, Jianping Y, Elda R, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci U S A, 2012;109(43):17561–17566.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#