Diagnosis of infections caused by Clostridium difficile in the Czech Republic: availability, possibilities, and interpretation of laboratory results
Authors:
M. Krůtová 1,2; O. Nyč 1
Authors‘ workplace:
Ústav lékařské mikrobiologie, Univerzita Karlova, 2. lékařská fakulta a Fakultní nemocnice v Motole
1; DNA laboratoř kliniky dětské neurologie, Univerzita Karlova, 2. lékařská fakulta a Fakultní nemocnice v Motole
2
Published in:
Epidemiol. Mikrobiol. Imunol. 64, 2015, č. 2, s. 92-97
Category:
Original Papers
Overview
Objective:
To assess the availability of the laboratory diagnosis of infections caused by C. difficile in the Czech Republic (CR), including the range of tests used, possible combinations, and adequate interpretation of model results.
Material and methods:
Data were collected through a web questionnaire survey with the participation of representatives of 61 public and private microbiological laboratories. The questionnaire addressed the use of diagnostic test kits and culture media in the diagnosis of C. difficile infection (CDI). In addition, the respondents were asked to interpret a glutamate dehydrogenase (GDH) positive and, at the same time, toxin A/B negative result, without or with laboratory confirmation if available.
Results:
In the CR, the most commonly used test in the diagnosis of CDI is the C. DIFF Quik Chek Complete® test (Alere) for the detection of GDH and A/B toxins, as reported by 50 (82 %) laboratories. Anaerobic culture is performed by 43 (70.5 %) laboratories, 21 (48.8 %) of which use selective agar (Oxoid). Direct detection of DNA of toxigenic C. difficile is feasible in 17 (27.9 %) laboratories, with most of them (15 laboratories) using the closed system Xpert® C. difficile (Cepheid).
The diagnosis based only on the detection of GDH and A/B toxins is used by 13 (21.3 %) laboratories. Two (3.3 %) laboratories detect A/B toxins alone and three (4.9 %) laboratories carry out the detection of A/B toxins followed by anaerobic culture. A three step scheme: detection of GDH and A/B toxins with subsequent anaerobic culture is used by 26 (42.6 %) laboratories. The detection of GDH and A/B toxins along with a PCR assay are provided by three (4.9 %) laboratories. A complete diagnostic scheme for CDI (detection of GDH and A/B toxins, direct detection of DNA, and aerobic culture) is feasible in 14 (23 %) laboratories.
Conclusion:
This questionnaire survey study identified 24 different testing algorithms to be in use within the study period (April to July 2014) in the CR. Five (8.2 %) laboratories have no highly sensitive screening test such as the detection of GDH or nucleic acid amplification test (NAAT) included in their testing algorithm. Thirteen (21.3 %) laboratories perform the detection of GDH and A/B toxins but have no confirmation method to be used if only one test turns out positive. In the case of GDH positivity and A/B toxin negativity, the result should be provided with a supplementary comment on further possibilities for the laboratory detection of CDI and the claimed sensitivity of the test used. If no confirmation test is available, the result should be considered as epidemiolo-gically and clinically significant, once other possible causes of diarrhoea are ruled out.
Keywords:
Clostridium difficile – diagnosis – testing algorithm – glutamate dehydrogenase – A/B toxins
Sources
1. Freeman J, Bauer MP, Baines SD, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Revm, 2010;23(3):529–549.
2. Krůtová M, Matějková J, Nyč O. První výsledky molekulární typizace C. difficile v ČR. Zprávy CEM (SZÚ, Praha), 2013;22(12):399–401.
3. Obuch-Woszczatynski P, Lachowitzd D, Schneidera et al. Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008–2010. Anaerobe, 2014;28:13–17.
4. Krutova M, Nyc O, Kuijper EJ, et al. A case of imported Clostridium difficile PCR-ribotype 027 infection within the Czech Republic which has a high prevalence of Clostridium difficile ribotype 176. Anaerobe, 2014;30:153–155.
5. Knetsch CW1, Lawley TD, Hensgens MP, et al. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill, 2013;18(4):20381.
6. Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infec-tion: new developments in epidemiology and pathogenesis. Nat Rev Microbiol, 2009;7(7):526–536.
7. Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect, 2014;20(Suppl 2):1–26.
8. Beneš J, Husa P, Nyč O, et al. Doporučený postup diagnostiky a léčby kolitidy vyvolané Clostridium difficile. Klin Mikrobiol Infekc Lek, 2014;20(2):56–66.
9. Wilcox MH, Planche T, Fang FC, et al. What is the current role of algorithmic approaches for diagnosis of Clostridium difficile infection? J Clin Microbiol, 2010;48(12):4347–4353.
10. Crobach MJ, Dekkers OM, Wilcox MH, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect, 2009;15(12):1053–1066.
11. Wilcox MH. Overcoming barriers to effective recognition and diagnosis of Clostridium difficile infection. Clin Microbiol Infect, 2012;18(Suppl 6):13–20.
12. Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C. difficile infection. Lancet Infect Dis, 2013;13(11):936–945.
13. Sharp SE, Ruden LO, Pohl JC, et al. Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of Clostridium difficile disease. J Clin Microbiol, 2010;48(6):2082–2086.
14. Eastwood K, Else P, Charlett A, et al. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol, 2009;47(10):3211–3217.
15. Krůtová M, Matějková J, Zajac M, et al. Diagnostika Clostridium difficile infekcí – porovnávací studie dvou imunoenzymatických metod s konfirmací pomocí PCR a kultivace s následnou ribotypizací kmene. Epidemiol Mikrobiol Imunol, 2014;63(2):99–102.
16. Sloan LM, Duresko BJ, Gustafson DR, et al. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol, 2008;46(6):1996–2001.
17. de Jong E, de Jong AS, Bartels CJ, et al. Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. Eur J Clin Microbiol Infect Dis, 2012;31(9):2219–2225.
18. Riley TV, Brazier JS, Hassan H, et al. Comparison of alkohol shock enrichment and selective enrichment for the isolation of Clostridium difficile. Epidemiol Infect, 1987;99(2):355–359.
19. Wilcox MH, Fawley WN, Parnell P. Value of lysozyme agar incorporation and alkaline thioglycollate exposure for the environmental recovery of Clostridium difficile. J Hosp Infect, 2000;44(1):65–69.
20. Belanger SD, Boissinot M, Clairoux N, et al. Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol, 2003;41(2):730–734.
21. Barbut F, Braun M, Burghoffer B, et al. Rapid detection of toxigenit strains of Clostridium difficile in diarrheal stools by real-time PCR. J Clin Microbiol, 2009;47(4):1276–1277.
22. Babady NE, Stiles J, Ruggiero P, et al. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol, 2010;48(12):4519–4524.
23. Shin S, Kim M, Kim M, et al. Evaluation of the Xpert Clostridium difficile assay for the diagnosis of Clostridium difficile infection. Ann Lab Med, 2012;32(5):355–358.
24. Krutova M, Matejkova J, Nyc O. C. difficile ribotype 027 or 176? Folia Microbiol (Praha), 2014;59(6):523–526.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2015 Issue 2
Most read in this issue
- The possibilities of zoonotic transmission of rotaviruses
- Hepatitis E – overview of the latest knowledge
- Toxoplasmosis in immunocompromised patients
- The prevalence of nasal carriage of Staphylococcus aureus aureus and methicillin-resistant S. aureus (MRSA) among general medicine students of the Palacky University Olomouc