Opportunistic Pathogen Candida glabrata and the Mechanisms of its Resistance to Antifungal Drugs
Authors:
N. Berila; J. Šubík
Authors‘ workplace:
Katedra mikrobiológie a virológie, Prírodovedecká fakulta Univerzity Komenského, Bratislava, Slovenská republika
Published in:
Epidemiol. Mikrobiol. Imunol. 59, 2010, č. 2, s. 67-79
Overview
Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.
Key words:
Candida glabrata – virulence factors – resistance mechanisms – biofilm – antifungal drugs.
Sources
1. Abi-Said, D., Anaissie, E., Uzun, O., Raad, I. et al., The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis, 1997, 24, 1122-1128.
2. Cheng, M.,Yang, Y., Yao, T., Lin, CH. et al., Risk factors for fatal candidemia caused by Candida albicans and non-albicans species. Infect Dis, 2005, 5, 22.
3. Diekema, D. J., Messer, S. A., Brueggemann, A. B. Epidemiology of candidemia : 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol, 2002, 40, 1298-1302.
4. Brondz, I., Olsen, I. Multivariate analyses of cellular carbohydrates and fatty acids of Candida albicans, Torulopsis glabrata, and Saccharomyces cerevisiae. J Clin Microbiol, 1990, 28, 1854-1857.
5. Odds, F. C., Rinaldi, M. G., Cooper J. R. et al., Candida and Torulopsis: a blinded evaluation of use of pseudohypha formation as basis for identification of medically important yeasts. J Clin Microbiol, 1997, 35, 313-316.
6. Kaur, R., Domergue, R., Zupancic, M. L., Cormack, B. P. A yeast by any other name: Candida glabrata and its iteraction with the host. Curr Opinion Microbiol, 2005, 8, 378-384.
7. Lachke, S. A., Joly, S., Daniels, K., Soll, D. R. Phenotypic switching and filamentation in Candida glabrata. Microbiology, 2002a, 148, 2661-2674.
8. Srikantha, T., Zhao, R., Daniels, K., Radke, J., Soll, D. R. Phenotypic switching in Candida glabrata accompanied by changes in expression og genes with deduced functions in copper detoxifications and stress. Eucaryot cell., 2005, 4, 1434-1445.
9. Dujon, B., Sherman, D., Fisher, G., Durrens, P., Casaregola, S. Genome evolution in yeasts. Nature, 2004, 430, 35-44.
10. Kurtzmann, C. P., Fell, J. W. The yeasts, a taxonomic study. Elsevier Scientific B. V., 2000, Amsterdam, The Netherlands.
11. Larone, D. H. Medically important funghi: A guide to identification, 3rd ed. ASM Press, Washington, 1995 D.C.
12. Csank, C., Haynes, K. Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett., 2000, 189, 115-120.
13. Barnett, J. A., Payne, R. W., Yarrow, D. Yeasts: characteristic and identification. Cambridge University Press, 1983, Cambridge.
14. Fidel, P. L. Jr., Vazquez, J. A., Sobel, J. D. Candida glabrata: Review of epidemiology, pathogenesis and clinical disease with comparison to Candida albicans. Clin Microbiol Review, 1999, 12, 80-96.
15. Kocková-Kratochvílová, A. Taxonómia kvasiniek a kvasinkových mikroorganizmov. Alfa Bratislava,, 1990, 48-65.
16. Bouchara, J. P., Zouhair, R., Le Boudoil, S., Renier, G. et al., In-vivo selection of an azole-resistant petite mutant of Candida glabrata. J. Med Microbiol, 2000, 49, 977-984.
17. Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., Bille, J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob. Agents Chemother, 1999, 43, 2753-2765.
18. Brun, S., Dalle, F., Saulnier, P., Renier, G. et al., Biological consequences of petite mutations in Candida glabrata. J. Antimicrob. Chemother., 2005, 56, 307-314.
19. Odds, F. C., Bernaerts, R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol, 1998, 32, 1923-1929.
20. Bernal, S., Martín Mazuelos, E. Evaluation of the new API Candida system for identification of the most clinically important yeast species. Diag Microbiol Infect Dis, 1998, 32, 217-221.
21. Heelan, J. S., Siliezar, D., Coon, K. Comparison of rapid testing methods for enzyme production with the germ tube method for presumptive identification of Candida albicans. J Clin Microbiol, 1996, 34, 2487-2849.
22. Willinger, B. Laboratory diagnosis and therapy of inavsive fungal infections. Curr Drug Targets, 2006, 7, 513-522.
23. Boyanton, B. L. Jr., Luna, R. A., Fasciano, L. R., Menne, K. G., Versalovic, J. DNA pyrosequencing-based identification of pathogenic Candida species by using the internal transcribed spacer 2 region. Arch Pathol Lab Med, 2008, 132, 667-674.
24. Zeng, X., Kong, F., Halliday, C. Reverse line blot hybridization assay for identification of medically important fungi from culture and clinical specimens. J Clin Microbiol, 2007, 45, 2872-2880.
25. Dujon, B. Altogether now - sequencing the yeast genome. Curr Biol, 1992, 2, 279-281.
26. Dujon, B., Sherman, D., Fisher, G. Genome evolution in yeasts. Nature, 2004, 430, 35-44.
27. Cohn, M., McEachern, M. J., Blackburn, E. H. Telomeric sequence diversity within the genus Saccharomyces. Curr Genet, 1998, 33, 83-91.
28. Shu, H. H., Martin, N.C. RNase P RNA in Candida glabrata mitochondria is transcribed with substrate tRNAs. Nucleic Acids Res, 1991, 19, 6221-6226.
29. Koszul, R., Malpertuy, A., Frangeul, L., Bouchier, C. et al., The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett, 2003, 534, 39-48.
30. O’Connor, R. M., McArthur, C. R., Clark-Walker, G. D. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 μm. J Bacteriol, 1976, 126, 959-968.
31. Eggimann, P., Garbino, J., Pittet, D. Epidemiology of Candida species infections in critically ill non-immunocompromised patients. Lancet Infect Dis, 2003, 3, 685-702.
32. Meeěs De, T., Renaud, F. et al. Genetic structure of Candida glabrata populations in AIDS and non-AIDS patiens. J Clin Microbiol, 2002, 40, 2199-2206.
33. Nguyen, M. H., Peacock, D. J., Morrsis, A. J. The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med, 1996, 100, 617-623.
34. Hitchcock, C. A., Pye, G. W., Troke, E. M., Johnson, D., Warnock, D. W. Fluconazole resistance in Candida glabrata. Antimicrob. Agents Chemother, 2003, 37, 1962-1965.
35. Laverdiére, M., Rotstein, C., Bow, E. J., Roberts, R. S. et al., CANADIAN FLUCONAZOLE STUDY GROUP. Impact of prophylaxis on fungal colonization and infection rates in neutropenic patients. J Antimicrob. Chemother., 2000, 46, 1001-1008.
36. Newman, S. L., Flanigan, T. P., Fisher, A., Rinaldi, M. G., Stein, M., Vigilante, K. Clinically significant mucosal candidiasis resistant to fluconazole treatment in patients with AIDS. Clin Infect Dis, 1994, 19, 684-686.
37. Li, L., Redding, S., Dongari-Bagtzoglou, A. Candida glabrata, an emerging oral opportunistic pathogen. J Dent Res, 2007, 86, 204-215.
38. Guo, B., Styles, C. A., Feng, Q., Fink, G. R. A Saccharomyces gene family involved in invasive growth, cell-cell adjesion and mating. Proc Natl Acad Sci, 2000, 97, 12158-12163.
39. Las Penčz de, A., Pan, S. J., CastaĖo, I., Alder, J. et al., Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP-1 and SIR-dependent transcriptional silencing. Genes and Development, 2003, 17, 2245-2258.
40. Weig, M., Jänsch, L., Gross, U., Koster de, Ch. G. et al., Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathoge Candida glabrata. Microbiology, 2004, 150, 3129-3144.
41. Dranginis, A. M., Rauceo, J. M., Coronado, J. E., Lipke, P. N. A biochemical guide to yeast adhesins: Glycoproteins for social and antisocial occasions. Microb Mol Biology Rev, 2007, 71, 282-294.
42. Loza, L., Fu, Y., Ibrahim, A. S., Sheppard, D. C. et al.,Functional analysis of the Candida albicans ALS1 gene product. Yeast, 2004, 21, 473-482.
43. Calderone, R. A., Braun, P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev, 1991, 1, 1-20.
44. Klotz, S. A., Gaur, N. K., Armond, R. D., Sheppard, D. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Medical Mycology, 2007, 45, 363-370.
45. Kuhn, D. M., Ghannoum, M. A. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig. Drugs, 2004, 5, 186-197.
46. Kumamoto, C. A. Candida biofilms. Curr Opinion in Microbiol, 2002, 5, 608-611.
47. Chakrabarti, A., Nayak, N., Talwar, P. In vitro proteinase production by Candida species. Mycopathologia., 1991, 114, 163-168.
48. Samaranayke, L. P., Raeside, J. M., MacFarlane, T. W. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia, 1984, 22, 201-207.
49. Al-Rawi, N., Kavangh, K. Characterisation of yeasts implicated in vulvovaginal candidosis in Irish woman. Br J Biomed Sci, 1999, 56, 99-104.
50. Lachke, S. A., Srikantha, T., Tsai, L. K., Daniels, K., Soll, D. R. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun, 2002b, 68, 884-895.
51. Calcagno, A. M., Bignell, E., Warn, P., Jones, M. D., Denning, D. W. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol, 2003, 50, 1309-1318.
52. Glee P. M., Sunstrom P., Hazen K. C. Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun, 1995, 63, 1373-1379.
53. Singleton, D. R., Masuoka, J., Hazen, K. C. Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol, 2001, 183, 3582-3588.
54. Masuoka, J., Hazen, K. C. Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology, 1997, 143, 3015-3021.
55. Singleton, D. R., Masuoka, J., Hazen, K. C. Surface hydrophobicity changes of two Candida albicans serotype B mn4DDD mutants. Eucaryotic Cell, 2005, Apr, 635-648.
56. Hazen, K. C., Hazen, B. W. Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun, 1992, 60, 1499-1508.
57. Hazen, K. C., Lay, J. G., Hazen, B. W., Fu, F. C., Murthy, S. Partial biochemical characterisation of cell surface hydrophobicity and hydrophilicity of C. albicans. Infect Immun, 1990, 58, 3469-3476.
58. Luo, G., Samaranayke, L. P. Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesin to denture acrylic surfaces compared with Candida albicans. APMIS, 2002, 110, 601-610.
59. Egusa, H., Ellepola, A. N., Nikawa, H., Hamada, T. et al.,Sub-therapeutic exposure to polyene antimycotics elicits a pos-antifungal effect and depresses the cell surface hydrophobicity of oral Candida albicans isolates. J Oral Pathol Med, 2000, 29, 206-213.
60. Costerton, J. E. Microbial biofilms. Annu Rev Microbiol, 1995, 49, 711-745.
61. Nobile, C. J., Schneider, H. A., Nett, J. E. et al., Complementary adhesin functions in Candida albicans biofilm rormation. Curr Biol, 2008, 22, 1017-1024.
62. Ramage, G., Wickes, B. L., López-Ribot, J. L. A seed and feed model for the formation of Candida biofilms under flow conditions using an improved modified Robbins device. Rev Iberoam Mycol, 2008, 25, 37-40.
63. Avon, S. L., Goulet, J. P., Deslauriers, N. Removable acrylic resin disk as a sampling system for the study of denture biofilms in vivo. J Prosthet Dent, 2007, 97, 32-38.
64. Bachmann, S. P., Vandewalle, K., Ramage, G., Patterson, T. F. et al. In vitro activity of caspofungin against Candida albicans biofilm. Antimicrob Agents Chemother., 2002, 46, 3591-3596.
65. Ramage, G., Martinez, J. P., Lopez-Ribot, J. L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res., 2006, 6, 979-986.
66. Chandra, J., Kuhn, D. M., Mulherjee, P. K., Hoyer, L. L., McCornick, T. Biofilm formation by the fungal pathogen Candida albicans. Development, architecture and drug resistance. J Bacteriol, 2001, 183, 5385-5394.
67. Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M. Candida biofilms: a development state associated with specific and stable gene expression patterns. Eukaryot Cell, 2004, 3, 536-545.
68. O’Connor, L., Lahiff, S., Casey, F., Glennon, M. et al. Quantification of ALS gene expression in Candida species biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol Cell Probes, 2005, 19, 153-162.
69. Seidler, M., Salvenmoser, S., Muller, F. M. In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections. Int J Antimicrob Agents, 2006, 28, 568-573.
70. Costerton, J. W. Stewart and Greenberg. Biofilms: a common cause of persistante infections. Science, 1999, 284, 1318-1322.
71. D’Enfert, K. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets, 2006, 4, 465-470.
72. Chen, H., Fujita, M., Feng, Q., Clardy, J., Fink, G. R. Tyrosol is quorum-sensing molecule in Candida albicans. Proc Nat Acad SCI USA, 2004, 101, 5048-5052.
73. Dhamnika, N., Hornby, J. M. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect and Immun, 2007, 75, 1609-1618.
74. Flemming, H. C., Wingender, J., Mayer, C., Korstgens, V., Borchard, W. Cohesiveness in biofilm matrix polymers, In: Community Structure and Co-operation in Biofilms. Cambridge University Press, 2000, Cambridge.
75. Thein, Z. M., Samaranayke, Y. H., Samaranayke, L. P. In vitro biofilm formation of Candida species under dynamic and anaerobic conditions. Archives of Oral Biology, 2007.
76. Mishra, N. N., Prasad, T., Sharma, N., Payasi, A. et al. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung, 2007, 54, 201-235.
77. Nett, J., Andes, D. Candida biofilm development, modeling and host-pathogen inetraction. Curr. Opinion in Microbiol, 2006, 9, 340-345.
78. Tumbarello, M., Posteraro, B., Trecarichi, E. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol, 2007, June p. 1843-1850.
79. Donlan, R. M. Biofilms and device-associated infections. Emerg. Infect Dis, 2001, 7, 277-281.
80. Raad, I. Intravascular-catheter-related infections. Lancet, 1998, 351, 893-898.
81. Bambeke, F., Balzi, E., Tulkens, P. M. Antibiotic efflux pumps., Biochem. Pharmacol, 2000, 15. 60, 457-470.
82. Bialkova, A., Subik, J. Biology of the pathogenic yeast Candida glabrata. Folia Microbiol, 2006, 51, 3-20.
83. Nguyen, M. H., Clancy, C. J., Yu, V. L., Morris, A. J. Do in vitro susceptibilzy data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis, 1998, 177, 425-430.
84. Redding, S. W., Kirkpatrick, W. R., Saville, S., Coco, B. J. et al. Multiple patterns of resistance to fluconazole in Candida glabrata isolates from a patient with oropharyngeal candidiasis receiving head and neck radiation. J Clin Microbiol, 2003, 41, 619-622.
85. Vermitsky, J. P., Edlind, T. D. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother, 2004, 48, 3773-3781.
86. Kozovská, Z., Šubík, J. Modulácia mnohonásobnej rezistencie. Biologické listy, 2004, 69, 161-190.
87. Sanglard, D. Resistance of human fungal pathogens to antifungal drugs. Curr Opinion Microbiol, 2002, 5, 379-385.
88. Sanglard, D., Ischer, F., Bille, J. Role of ATP-binding-cassette transporter gene in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother, 2001, 45, 1174-1183.
89. Batova, M., Borecka-Melkusova, S., Simockova, M., Dzugasova, V. et al. Functional characterization of the CgPGS1 gene reveals a link between mitochondrial phospholipid homeostasis and drug resistance in Candida glabrata. Curr Genet, 2008, 53, 313-322.
90. Defontaine, A., Bouchara, J. P., Declerc, P., Planchenault, C. et al. In-vitro resistance to azoles associated with mitochondrial deficiency in Candida glabrata. J Med Microbiol, 1999, 48, 663-670.
91. Kontoyiannis, D. P. Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother, 2000, 46, 191-197.
92. Sanglard, D., Kuchler, K., Ischer, F., Pagani, J. L. et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother, 1995, 39, 2378-2386.
93. Denning, D. W., Venkateswarlu, K., Manning, N. J., Kelly, S. L. Reduced accumulation of drug in Candida krusei accounts for itraconazole resistance. Antimicrob Agents Chemother, 1996, 40, 2443-2446.
94. Venkateswarlu, K., Denning, D. W., Kelly, S. Inhibition and interaction of cytochrome P-450 of Candida krusei with azole antifungal drugs. J Med Vet Mycol, 1997, 35, 19-25.
95. Schmitt, L., Tampé, R. Structure and mechanisms of ABC transporters. Curr Opin Struct Biol, 2002, 12, 754-760.
96. Sipos, G., Huchler, K. Fungal ATP-binding cassette (ABC) transporters in drug resistance and detoxification. Curr Drug Targets, 2006, 7, 471-481.
97. Rea, P. A. MRP subfamily ABC transporters from plants and yeast. J Exp Bot, 1999, 50, 895-913.
98. Prasad, R., Kapoor, K. Multidrug resistance in yeast Candida. Internat. Rev Cyt, 2005, 215-248.
99. Sanglard, D., Ischer, F., Monod, M., Bille, J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal antigens and other methabolic inhibitors. Antimicrob Agents Chemother, 1996, 40, 2300-2305.
100. Wada, S., Niimi, M., Niimi, K., Holmes, A. R., Monk, B. C. et al. Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem, 2002, 227, 46809-46821.
101. Sanguinetti, M., Posteraro, B., Fiori, B., Ranno, S. et al. Mechanisms of azole resistance in clinical isolates og Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother, 2005, 49, 668-679.
102. Mahe, Y., Lemoine, Y., Kuchler, K. The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem, 1996, 271, 25167-25172.
103. Torelli, R., Posteraro, B., Ferrari, S., La Sorda, M. et al. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol, 2008, 1, 186-201.
104. Decottignies, A., Lambert, L., Catty, P., Degand, H. et al. Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem, 1995, 270, 18150-18157.
105. Drobna, E., Bialkova, A., Subik, J. Transcriptional regulators of seven yeast species: comparative genome analysis: Review Folia Microbiol, 2008, 53, 275-287.
106. Tsai, H. F., Krol, A. A., Sarti, K. E., Bennett, J. E. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother, 2006, 50, 1384-1392.
107. Berila, N., Borecka, S., Dzugasova, V., Bojnansky, J., Subik, J. Mutations in the CgPDR1 and CgERG11 genes in azole resistant Candida glabrata clinical isolates in Slovakia. Int J Antimicrob Agents, 2009, 33, 574-578.
108. Ferrari, S., Ischer, F., Calabrese, D., Posteraro, B. et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLOS Pathogens., 2009, 5, e1000268.
109. Calabrese, D., Bille, J., Sanglard, D. A. novel multidrug efflux transporter gene of major facilitator superfamily from Candida albicans (FLU1) confering resistance to fluconazole. Microbiol, 2000, 146, 2743-2754.
110. Del Sorbo, G., Schoonbeek, H. J., De Waard, M. A. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol, 2000, 30, 1-15.
111. White, T. C. Increased mRNA levels of ERG16, CDR and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human imunodeficience virus. Antimicrob Agents Chemother, 1997, 28, 1482-1487.
112. Pasrija, R., Banerjee, D., Prasad, R. Structure and function analysis of a CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot Cell, 2007, 6, 443-453.
113. Kohli, A., Gupta, V., Krishnamurthy, S., Hasnain, S. E., Prasad, R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. J Biosci, 2001, 26, 333-339.
114. Lyons, Ch. N., White, T. C. Transcriptional analyses of antifungal drug resistance in Candida albicans. Antimicrob Agents Chemother, 2000, 44, 2296-2303.
115. Song, J. L., Harry, J. B., Eastman, R. T., Oliver, B. G., White, T. C. The Candida albicans lanosterol 14-α-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother, 2004, 48, 1136-1144.
116. Marichal, P., Koymans, L., Willemsens, S., Bellens, D. Contributions of mutations in cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiol, 1999, 145, 2701-2713.
117. Vandeputte, P., Tronchin, G., Bergés, T., Hennequin, Ch. et al. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob. Agents Chemother, 2007, 51, 982-990.
118. Carrillo-MuĖoz, A. J., Quindós, G., López-Ribot, J. L. (2004) Current developments in antifungal agents. Curr Med Chem Antiinfect Agents 3: 297-323.
119. Sanglard, D., Ischer, F., Monod, M., Bille, J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal antigens and other methabolic inhibitors. Antimicrob Agents Chemother, 2002, 40, 2300-2305.
120. Katiyar, S., Pfaller, M., Edlind, T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother, 2006, 50, 2892-2894.
Labels
Hygiene and epidemiology Medical virology Clinical microbiologyArticle was published in
Epidemiology, Microbiology, Immunology
2010 Issue 2
Most read in this issue
- Antibiotic Resistance and Biofilm Formation in Staphylococcus saprophyticus Strains Isolated from Urine
- Opportunistic Pathogen Candida glabrata and the Mechanisms of its Resistance to Antifungal Drugs
- Mobile Genetic Elements in the Epidemiology of Bacterial Resistance to Antibiotics
- Susceptibility of Staphylococcus aureus Biofilms to Vancomycin, Gentamicin and Rifampin