#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Clinicopathological analysis of programmed death-ligand 1 testing in tumor cells of 325 patients with non-small cell lung cancer: Its predictive and potential prognostic value


Authors: Anna Farkašová 1;  Vladimír Tancoš 2;  Zuzana Kviatkovská 1;  Zdenko Huťka 1,2;  Jozef Mičák 2;  Karla Scheerová 1;  Peter Szépe 1,2;  Lukáš Plank 1,2
Authors‘ workplace: Martinské bioptické centrum, s. r. o. v Martine 1;  Ústav patologickej anatómie Jesseniovej lekárskej fakulty Univerzity Komenského a Univerzitnej nemocnice v Martine 2
Published in: Čes.-slov. Patol., 54, 2018, No. 3, p. 137-142
Category: Original Articles

Overview

Introduction:

Recent studies on check-point inhibitor therapy, which seems to improve the prognosis of patients with advanced non-small cell lung carcinoma increase the importance of immunohistochemical analyses of the programmed-death receptor and of its ligand, PD-L1 protein.

Material and methods:

In our study we present results of PD-L1 immunohistochemical tumor cell expression in a series of 325 lung carcinoma patients biopsies, using the clone 22C3 (and DAKO Link 48 immunostainer). Evaluation of the expression using tissue proportion scoring system allowed to distinguish negative cases (either 0 % or < 1 % of positive tumor cells) versus positive cases in the categories 1-9 %, 10-49 % and ≥ 50 % of positive tumor cells.

Results:

In association to histopathologic parameters we observed similar rates of positive expression in patients with adenocarcinoma types (47,8 % of all the cases) as well as with squamous cell carcinomas (44,4 %). Within these histological categories, the rates of positivity were similar also in patients with small versus large (resectional) biopsies. In the biopsies of patients with adenocarcinoma we identified differences in the PD-L1 protein expression associated with its histological subtype. In the cases with predominant lepidic pattern the PD-L1 positivity was present in 18,8 %, with predominant acinar or papillary pattern in 40,8 % and in cases with predominant solid or micropapillary component in 74,1 % of the cases resp. Keratinizing squamous cell carcinomas were positive in 38,5 % and non-keratinizing in 53,8 % of all the cases. The hiqhest incidence of an extensive posivity was observed in sarcomatoid carcinoma type.

Discussion and conclusion:

Immunohistochemically verified PD-L1 protein expression represents a broadly accepted predictive biomarker for immunotherapy of NSCLC patients. The indicated differences of the expression among various NSCLC types and subtypes require to be verified in larger cohorts of patients in relation with clinical parameters to demonstrate whether it could be plausible to use the PD-L1 expression in a role of a negative prognostic parameter.

Keywords:

programmed death-ligand 1 – non-small cell lung cancer – immunotherapy – prognostic marker


Sources

 1. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-264. 

2. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39(1):1-10.

3. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20(19): 5064–5074.

4. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14(4): 847-856.

5. Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 2015; 33(18): 2004-2012.

6. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicenter, open-label, phase 2 randomised controlled trial. Lancet 2016; 387(10030): 1837-1846.

7. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443-2454.

8. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20(19): 5064-5074.

9. Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J Thorac Oncol 2017; 12(2): 208-222.

10. Matěj R. Hodnocení exprese PD-L1 u tzv. nemalobuněčných karcinomů plic je a bude složité. Cesk Patol 2017; 53(3): 113.

11. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG, eds. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart (4th ed). Lyon, IARC; 2015.

12. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respi­ratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6(2): 244–285.

13. Kazandjian D, Suzman DL, Blumenthal G, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist 2016; 21(5): 634–642.

14. Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21(5): 643–650.

15. Seetharamu N, Preeshagul IR, Sullivan KM. New PD-L1 inhibitors in non-small cell lung cancer - impact of atezolizumab. Lung Cancer 2017; 8:67-78.

16. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387(10027): 1540-1550.

17. Gridelli C, Ardizzoni A, Barberis M, et al. Predictive biomarkers of immunotherapy for non-small cell lung cancer: results from an Experts Panel Meeting of the Italian Association of Thoracic Oncology. Transl Lung Cancer Res 2017; 6(3): 373-386.

18. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015; 348(6230): 124–128.

19. Boland JM, Kwon ED, Harrington SM, et al. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin Lung Cancer 2013; 14(2): 157-163.

20. Velcheti V, Schalper KA, Carvajal DE, et al.

Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 2014; 94(1): 107-116.

21. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer 2014; 50(7): 1361-1369.

22. Zhang Y, Wang L, Li Y, et al. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther 2014; 7: 567-573.

23. Mao Y, Li W, Chen K, et al. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget 2015; 6(5): 3452-3461.

24. Ilie M, Long-Mira E, Bence C, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol 2016; 27: 147-153.

25. Wang A, Wang HY, Liu Y, et al. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis. Eur J Surg Oncol 2015; 41(4): 450-456.

26. Pan ZK, Ye F, Wu X, An HX, Wu JX. Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: a meta-analysis. J Thorac Dis 2015; 7(3): 462-470.

27. Koh J, Go H, Keam B, et al. Clinicopathologic analysis of programmed cell death-1 and programmed cell death ligand 1 and 2 expressions in pulmonary adenocarcinoma: comparison with histology and driver oncogenic alteration status. Mod Pathol 2015; 28(9): 1154-1166.

28. Shimoji M, Shimizu S, Sato K, et al. Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer 2016; 98: 69-75.

29. Kim S, Kim MY, Koh J, et al. Programmed death-1 ligand 1 and 2 are highly expressed in pleomorphic carcinomas of the lung: Comparison of sarcomatous and carcinomatous areas. Eur J Cancer 2015; 51(17): 2698-2707.

30. Vieira T, Antoine M, Hamard C, et al. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) and strong immune-cell infiltration by TCD3 cells and macrophages. Lung Cancer 2016; 98: 51–58.

31. Chang YL, Yang CY, Lin MW, Wu CT, Yang PC. High co-expression of PD-L1 and HIF-1α correlates with tumour necrosis in pulmonary pleomorphic carcinoma. Eur J Cancer 2016; 60: 125-135.

32. Chen L, Gibbons DL, Goswami S et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014; 5: 5241.

33.Sun JM, Zhou W, Choi YL, et al. Prognostic Significance of PD-L1 in Patients with Non-Small Cell Lung Cancer: A Large Cohort Study of Surgically Resected Cases. J Thorac Oncol 2016; 11(7): 1003-1011.

34. Schmidt LH, Kümmel A, Görlich D, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS One 2015; 10(8): e0136023.

35. Kim MY, Koh J, Kim S, Go H, Jeon YK, Chung DH. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer 2015; 88: 24-33.

36. Rekhtman N, Ang DC, Riely GJ, Ladanyi M, Moreira AL. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol 2013; 26(10): 1307-1319.

37. Abdel-Rahman O. Correlation between PD-L1 expression and outcome of NSCLC patients treated with anti-PD-1/PD-L1 agents: A meta-analysis. Crit Rev Oncol Hematol 2016; 101(1): 75-85.

38. Sacher AG, Gandhi L. Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: A review. JAMA Oncol 2016; 2(9): 1217-1222.   

Labels
Anatomical pathology Forensic medical examiner Toxicology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#