#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vplyv chorioamnionitídy na morbiditu predčasne narodených novorodencov a možné terapeutické intervencie


Authors: L. Dočekalová 1;  J. Kopincová 2;  M. Kolomazník 3;  L. Časnocha-Lúčanová 1;  K. Maťašová 1
Authors‘ workplace: Department of Neonatology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic 1;  Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic 2;  Biomedical Center Martin and Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovak Republic 3
Published in: Čes-slov Pediat 2020; 75 (7): 436-442.
Category: Review

Overview

Incidencia predčasných pôrodov neustále narastá, pričom stále vyšší počet novorodencov sa zachraňuje v čoraz nižších gestačných týždňoch. Aj napriek výrazným pokrokom v starostlivosti o predčasne narodeného novorodenca, prematurita aj naďalej predstavuje limitujúci faktor pre ďalší vývoj týchto detí, keďže sa spája s veľkou mierou morbidity aj mortality.

Medzi najčastejšie príčiny spôsobujúce predčasný pôrod patrí chorioamnionitída. Jej problém nespočíva len v procesoch, ktoré vedú k predčasnému pôrodu, ale aj v samotnom zápale, ktorý môže spôsobiť výrazné komplikácie a signifikantne zhoršiť prognózu prematúrneho novorodenca. Negatívne účinky pritom nie sú pripísané len samotnému mikroorganizmu, ale hlavne prooxidačným a prozápalovým procesom, ktoré tieto patogény navodzujú. Keďže antibiotická liečba je zameraná len na ich usmrtenie alebo inhibíciu ďalšieho rastu a množenia, cieľom viacerých výskumov je nájsť takú terapeutickú intervenciu, ktorá by potlačila produkciu cytokínov a voľných radikálov. Najviac nádejnými sa zdajú byť melatonín, pentoxyfylín, erytropoetín a N-acetylcysteín. Tieto liečivá môžu zmierniť ničivé účinky oxidačného stresu a zápalu na rôzne orgánové systémy u novorodenca a tak znížiť komplikácie súvisiace s predčasným pôrodom vyvolaným chorioamnionitídou.

Klíčová slova:

chorioamnionitída – predčasne narodený novorodenec – oxidačný stres – zápal – neuroprotekcia


Sources

1. Boyle AK, Rinaldi SF, Norman JE, et al. Preterm birth: Inflammation, fetal injury and treatment strategies. J Reprod Immunol 2017; 119: 62–66.

2. Stojanovska V, Miller SL, Hooper SB, et al. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for neurochemical development and altered functions by inflammation and prostaglandins. Front Cell Neurosci 2018; 12: 26.

3. Zoban P. Nedonošený novorozenec. Čes-slov Pediat 2012; 67 (3): 203–208.

4. Marková D, Weberová-Chvílová M, Raušová P, et al. The care of prematurely born child: when to begin and end? Čes-slov Pediat 2014; 69 (1): 53–62.

5. Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG 2006; 113 (3): 17–42.

6. Strunk T, Inder T, Wang X, et al. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect Dis 2014; 14 (8): 751–762.

7. Pugni L, Pietrasanta C, Acaia B, et al. Chorioamnionitis and neonatal outcome in preterm infants: a clinical overview. J Matern Fetal Neonatal Med 2016; 29 (9): 1525–1529.

8. Ericson JE, Laughon MM. Chorioamnionitis: implications for the neonate Jessica. Clin Perinatol 2014; 42 (1): 155–165.

9. Jin C, Londono I, Mallard C, et al. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12: 180.

10. Perez M., Robbins ME, Revhaug C, et al. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142: 61–72.

11. Lu L, Claud EC. Intrauterinne inflammation, epigenetics, and microbiome influences on preterm infant health. Curr Pathobiol Rep 2018; 6: 15.

12. DeLuca D, Van Kaam AH, Tingay DG, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind th description of a new entity. Lancet Respir Med 2017; 5: 657–666.

13. Patra A, Huang H, Bauer JA, et al. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res 2017; 12 (6): 890–896.

14. Kramer BW, Kallapur S, Newnham J, et al. Prenatal inflammation and lung development. Semin Fetal Neonatal Med 2009; 14: 2–7.

15. Kemp MW, Kannan PS, Saito M, et al. Selective exposure of the fetal lung and skin/amnion (but not gastro-intestinal tract) to LPS elicits acute systemic inflammation in fetal sheep. PLoS One 2013; 8 (5): 1–9.

16. Wolfs TGAM, Kramer BW, Thuijls G, et al. Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation. Am J Physiol Gastrointest Liver Physiol 2014; 306 (5): G382–G393.

17. Elovitz MA, Brown AG, Breen K, et al. Intrauterinne inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 2011; 29: 663–671.

18. Shatrov JG, Birch SC, Lam LT, et al. Chorioamnionitis and cerebral palsy. Obstet Gynecol 2010; 116: 387–392.

19. Chao MW, Chen CP, Yang YH, et al. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1– –expressing cortical neurons in the developing rat fetal brain. Sci Rep 2016; 6: 32373.

20. Ginsberg Y, Khatib N, Weiner Z, et al. Maternal inflammation, fetal brain implications and suggested neuroprotection: A summary of 10 years of research in animal models. Rambam Maimonides Med J 2017; 8 (2): e0028.

21. Barton SK, Tolcos M, Miller SL, et al. Ventilation-induced brain injury in preterm neonates: A review of potential therapies. Neonatology 2016; 110: 155–162.

22. Barrington KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 2001; 1: 1.

23. Halliday HL. Update on postnatal steroids. Neonatology 2017; 111: 415–422.

24. Tataranno ML, Perrone S, Longini M, et al. New antioxidant drugs for neonatal brain injury. Oxid Med Cell Longev 2015; 2015: 108251.

25. Frargy ME, El-Sharkawy HM, Attia GF. Use of melatonin as an adjuvant therapy in neonatal sepsis. J Neonatal Perinatal Med 2015; 8 (3): 227–232.

26. Ofek-Shlomai N, Berger I. Inflammatory injury to the neonatal brain – what can we do?. Front Pediatr 2014; 2: 30.

27. Gitto E, Reiter RJ, Amodio A, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res 2004; 36 (4): 250–255.

28. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 2014; 141 (2): 150–159.

29. Khatib N, Weiner Z, Ginsberg Y, et al. Protective effect of N-acetyl--cysteine (NAC) in lipopolysaccharide (LPS)-associated inflammatory response in rat neonates. Rambam Maimonides Med J 2017; 8 (2): e0026.

30. Samuni Y, Goldstein S, Dean OM, et al. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 2013; 1830 (8): 4117–4129.

31. Kopincova J, Kolomaznik M, Mikolka P, et al. Recombinant human superoxide dismutase and N-acetylcysteine addition to exogenous surfactant in the treatment of meconium aspiration syndrome. Molecules 2019; 24 (5): E905.

32. Mikolka P, Kopincova J, Tomcikova-Mikusiakova L, et al. Antiinflammatory effect of N-acetylcysteine combined with exogenous surfactant in meconium-induced lung injury. Advs Epx Med Biol 2016; 934: 63–75.

33. Kopincova J, Mokra D, Mikolka P, et al. N-acetylcysteine advancement of surfactant therapy in experimental meconium aspiration syndrome: possible mechanisms. Physiol Res 2014; 63 (4): S629–S642.

34. Jenkins DD, Wiest DB, Mulvihill DM, et al. Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J Pediatr 2016; 168: 67–76.

35. Kiuru A, Ahola T, Klenberg, L, et al. Postnatal N-acetylcysteine does not provide neuroprotection in extremely low birth weight infants: A follow-up of a randomized controlled trial. Early Hum Dev 2019; 132: 13–17.

36. Moazzen H, Lu X, Ma NL, et al. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol 2014; 13: 46.

37. Plotnikov EY, Pavlenko TA, Pevzner IB, et al. The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS J 2017; 284: 3069–3078.

38. Hou Y, Wang L, Zhang L, et al. Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 2012; 43: 1233.

39. Koivusalo A, Kauppinen A, Anttila H, et al. Intraluminal casein model of necrotizing enterocolitis for assessment of mucosal destruction, bacterial translocation, and the effects of allopurinol and N-acetylcysteine. Pediatr Surg Int 2002; 18 (8): 712–717.

40. Sandberg K, Fellman V, Stigson L, et al. N-Acetylcysteine administration during the first week of life does not improve lung function in extremely low birth weight infants. Biol Neonate 2004; 86: 275–279.

41. Wiest DB, Chanbe E, Fanning D, et al. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr 2014; 165 (4): 672–677.

42. Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev 2012; 9: CD006616.

43. Pammi M, Haque KN. Pentoxifylline for treatment of sepsis and nercotising enterocolitis in neonates. Cochrane Database Syst Rev 2015; 3: CD004205.

44. Peng P, Xia Y. Influency of pentoxifylline treatment for neonatal sepsis: A meta-analysis of randomized controlled studies. Hong Kong J Emerg Med 2019: 1–8.

45. Schulzke SM, Deshmukh M, Nathan EA, et al. Nebulized pentoxifylline for reducing the duration of oxygen supplementation in extremely preterm neonates. J Pediatr 2015; 166 (5): 1158–1162.

46. Hamilçıkan Ş, Can E, Büke Ö, et al. Pentoxifylline treatment of very low birth weight neonates with nosocomial sepsis. Amer J Perinatol 2017; 34 (8): 795–800.

47. Speer EM, Dowling DJ, Ozog LS, et al. Pentoxifylline inhibits TLR-and inflammasome -mediated in vitro inflammatory cytokine production in human blood with greater efficacy and potency in newborns. Pediatr Res 2017; 81 (5): 806–816.

48. Wu YW, Bauer LA, Ballard RA, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics 2012; 130 (4): 683–691.

49. Tolsma KW, Allred EN, Chen ML, et al. Neonatal bacteremia and retinopathy of prematurity: the ELGAN study. Arch Ophthalmol 2011; 129 (12): 1555–1563.

50. Ehrenreich H, Weissenborn K, Prange H, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009; 40 (12): e647–56.

51. Fauchère JC, Koller BM, Tschopp A, et al. Safety of early high-dose recombinant Erythropoietin for neuroprotection in very preterm infants. J Pediatr 2015; 167 (1): 52–57.

52. Fischer HS, Reibel NJ, Bührer CH, et al. Prophylactic early erythropoietine for neuroprotection in preterm infants: A meta-analysis. Pediatrics 2017; 139 (5): e20164317.

53. Abdel-Hady H, Nasef N, Shabaan AE, et al. Caffeine therapy in preterm infants. World J Clin Pediatr 2015; 4 (4): 81–93.

54. Crowther CA, Brown J, McKinlay CJ, et al. Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Syst Rev 2014; 8: CD001060.

55. Usman S, Foo L, Tay J, et al. Use of magnesium sulfate in preterm deliveries for neuroprotection of the neonate. Obstetrician & Gynaecologist 2017; 19: 21–28.

56. Zeng X, Xue Y, Tian Q, et al. Effects and safety of magnesium sulphate on neuroprotection: A meta-analysis Based on PRISMA Guidelines. Medicine (Baltimore) 2016; 95 (1): e2451.

57. Morag I, Yakubovich D, Stern O, et al. Short–term morbidities and neurodevelopmental outcomes in preterm infants exposed to magnesium sulphate treatment. J Paediatr Child Health 2016; 52 (4): 397–401.

58. Poggi C, Dani C. Antioxidant strategies and respiratory disease of the preterm newborn: an update. Oxid Med Cell Longev 2014; 2014: 721043.

59. Bouhafs RK, Jarstrand C. Effects of antioxidants on surfactant peroxidation by stimulated human polymorhponuclear leukocytes. Free Radic Res 2002; 36 (7): 727–734.

60. Kopincova J, Mikolka P, Kolomaznik M, et al. Modified porcine surfactant enriched by recombinant human superoxide dismutase for experimental meconium aspiration syndrome. Life Sci 2018; 203: 121–128.

61. Davis JM, Parad RB, Michele T, et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics 2003; 111 (3): 469–476.

62. Benterud T, Ystgaard MB, Manueldas S, et al. N-Acetylcysteine amide exerts possible neuroprotective effects in newborn pigs after perinatal asphyxia. Neonatology 2017; 111: 12–21.

63. Fink NH, Collins CT, Gibson RA, et al. Targeting inflammation in the preterm infant: The role of the omega-3 fatty acid docosahexaenoic acid. J Nutr Intermed Metab 2016; 5: 55–60.

64. Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2011; 2011: 609813.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#