#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Risk factors affecting the outcome of newborns undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy


Authors: R. Poláčková 1;  J. Kučová 2,3;  Z. Švagera 4,5;  L. Kantor 6;  D. Šalounová 7
Authors‘ workplace: Katedra dětského lékařství a neonatologie, Lékařská fakulta Ostravské univerzity, Ostrava 1;  Oddělení neonatologie, Fakultní nemocnice Ostrava 2;  Ústav ošetřovatelství a porodní asistence, Lékařská fakulta Ostravské univerzity, Ostrava 3;  Ústav laboratorní diagnostiky, Fakultní nemocnice Ostrava 4;  Katedra biomedicínských oborů, Lékařská fakulta Ostravské univerzity, Ostrava 5;  Novorozenecké oddělení, Fakultní nemocnice a Lékařská fakulta Univerzity Palackého, Olomouc 6;  Katedra matematických metod v ekonomice, Vysoká škola báňská – Technická univerzita, Ostrava 7
Published in: Čes-slov Pediat 2019; 74 (1): 30-40.
Category: Original Papers

Overview

Aim of the study:

To evaluate the role of potential risk factors and biochemical parameters in the outcome, at 24 months of age, of newborns treated by therapeutic hypothermia for stage II and III hypoxic-ischemic encephalopathy.

Material and methods:

This prospective study comprised 51 newborns, of gestation age from 36–41 weeks, who were undergoing hypothermia treatment for stage II and III hypoxic-ischemic encephalopathy. Various risk factors were noted and monitored including birthplace, time hypothermia treatment was initiated, birth weight, Apgar score at 5 and 10 minutes of life, occurrence of seizures, serum lactate values, and lactate dehydrogenase. At 24 months, the patients were assessed and consequently divided into two groups. Patients placed in one group exhibited normal psychomotor development and were therefore judged to have positive treatment outcomes; the other group comprised those who displayed severely compromised motor coordination or sensory impairment, or even died. In each group specific risk factors were subsequently evaluated to determine their influence on treatment outcome.

Results:

Seven infants died during the course of the study. Of the remaining 44 examined at 2 years old, 34 exhibited positive psychomotor development, with adverse findings in 10 cases. The risk factors associated with adverse treatment outcome were noted to be low Apgar score at 5 and 10 minutes, seizures resistant to treatment, initial pH values, base excess, and lactate and lactate dehydrogenase in arterial blood at the time of admission. While both patient groups saw a significant reduction in lactate values over the course of hypothermia treatment, it was nevertheless clear that there were significant statistical differences in observed values.

Conclusion:

Elevated serum lactate values, lactate dehydrogenase early in the period post-asphyxia, and seizure activity resistant to pharmacotherapy are indicative of adverse outcomes in newborns receiving therapeutic hypothermia for stage II and III hypoxic-ischemic encephalopathy.

Keywords:

lactate – hypoxic-ischemic encephalopathy – therapeutic hypothermia – outcome – seizures


Sources
  1. Lawn JE, Bahl R, Bergstrom S, et al. Setting research priorities to reduce almost one million deaths from birth asphyxia by 2015. PLoS Med 2011; 8 (1): e1000389. https://doi.org/10.1371/journal.pmed.1000389
  2. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 2014 Sep. doi: https://doi.org/10.1016/S0140-6736(14)61698-6.
  3. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976; 33 (10): 696–705.
  4. Plavka R, a kol. Neonatální mortalita a morbidita, Česká republika 2016. Výsledky perinatální péče v ČR za rok 2016. In: XXXIV. celostátní konference perinatologie a fetomaternální medicíny s mezinárodní účastí. Karlovy Vary, 2017. Dostupné online: http://www.neonatology.cz/upload/www.neonatology.cz/morbidita/nu-2016-pro-www.pdf.
  5. Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database of Systematic Reviews 2013; (1), CD003311.
  6. Murray DM, Bala P, O´Connor C, et al. The predictive value of early neurological examination in neonatal hypoxic-ischaemic encephalopathy and neurodevelopmental outcome at 24 months. Dev Med Child Neurol 2010; 52 (2): e55–59.
  7. Kolářová R, Hálek J, Kantor L, et al. Řízená hypotermie v léčbě hypoxicko-ischemické encefalopatie – doporučený postup. Neonatologické listy 2011; 17 (2): 19–27. Dostupné z: http://www.neonatology.cz/upload/
  8. /www.neonatology.cz/Legislativa/Postupy/hypotermie.pdf.
  9. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39 (4): 214–223.
  10. Thoresen M, Tooley J, Liu X, et al. Time is brain: starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology 2013; 104 (3): 228–233.
  11. UK TOBY Cooling Register Clinician’s Handbook. Available online: https://www.npeu.ox.ac.uk/downloads/files/tobyregister/Register-Clinicans-Handbook1-v4-07-06-10.pdf.
  12. Kendall GS, Kapetanakis A, Ratnavel N, et al. Passive cooling for initiation of therapeutic hypothermia in neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed 2010; 95 (6): F408–F412.
  13. Cavallaro G, Filippi L, Raffaeli G, et al. Heart rate and arterial pressure changes during whole-body deep hypothermia. ISRN Pediatr 2013; 2013: 140213. doi: 10.1155/2013/140213.
  14. Shankaran S, Laptook AR, Pappas A, et al. National Institute of Child Health and Human Development Neonatal. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA 2014; 312 (24): 2629–2639.
  15. Wyatt JS, Gluckman PD, Liu PY, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007; 119 (5): 91–921.
  16. Li F, Wu T, Lei X, et al. The apgar score and infant mortality. PLoS One 2013; 8 (7): e69072.
  17. Hayakawa M, Ito Y, Saito S, et al. Incidence and prediction of outcome in hypoxic-ischemic encephalopathy in Japan. Pediatr Int 2014; 56 (2): 215–221.
  18. Nadeem M, Murray DM, Boylan GB, et al. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr 2011; 11 (10).
  19. Thoresen M, Liu X, Jary S, et al. Lactate dehydrogenase in hypothermia-treated newborn infants with hypoxic-ischaemic encephalopathy. Acta Paediatr 2012; 101 (10): 1038–1044.
  20. Miller SP, Weiss J, Barnwell A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002; 58 (4): 542–548.
  21. Srinivasakumar P, Zempel J, Trivedi S, et al. Treating EEG seizures in hypoxic ischemic encephalopathy: A randomized controlled trial. Pediatrics 2015; 136 (5): e1302–e1309.
  22. Painter MJ, Scher MS, Stein AD, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 1999; 341 (7): 485–489.
  23. Hellström-Westas L, Boylan G, Agren J. Systematic review of neonatal seizure management strategies provides guidance on anti-epileptic treatment. Acta Paediatr 2015; 104 (2): 123–129.
  24. Boylan GB,Rennie JM, Pressler RM, et al. Phenobarbitone, neonatal seizures, and video-EEG. Arch Dis Child Fetal Neonatal Ed 2002; 86 (3): F165–F170.
  25. Martinello K, Hart AR, Yap S, et al. Management and investigation of neonatal encephalopathy: 2017 update. Arch Dis Child Fetal Neonatal Ed 2017; 102 (4): F346–F358.
  26. Bergersen LH, Giedde A. Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenergetics 2012; 4: 5. doi: 10.3389/fnene.2012.00005.
  27. Varkilova L. Blood lactate measurement as a diagnostic and prognostic marker tool after birth asphyxia in newborn infants with gestational age > or = 34 gestational weeks. Akush Ginekol 2013; 52 (3): 36–43.
  28. Fernandez HG, Vieira AA, Barbosa AD. The correlation between plasma lactate concentrations and early neonatal mortality. Rev Bras Ter Intensiva 2012; 24 (2): 184–187.
  29. Shah S, Tracy M, Smyth J. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol 2004; 24 (1): 16–20.
  30. Silva SD, Hennebert N, Denis R, et al. Clinical value of single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr 2000; 89 (3): 320–323.
  31. Hanrahan JD, Cox IJ, Edwards AD, et al. Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res 1998; 44 (3): 304–311.
  32. Hanrahan JD, Cox IJ, Azzopardi D, et al. Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 1999; 41 (2): 76–82.
  33. Amess PN, Penrice J, Wylezinska M, et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999; 41 (7): 436–445.
  34. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care 2013; 3: 12. Available from: http://www.annalsofintensivecare.com/content/3/1/12.
  35. Castagnetti C, Pirrone A, Mariella J, et al. Venous blood lactate evalution in equine neonatalintensive care. Theriogenology 2010; 73 (3): 343–357.
  36. Borchers A, Wilkins PA, Marsh PM, et al. Sequental L-lactate concentration in hospitalised equine neonates: A prospective multicentre study. Equine Vet J Suppl 2013; (45): 2–7.
  37. Li J, Funato M, Tamai H, et al. Predictors of neurological outcome in cooled neonates. Pediatr Int 2013; 55 (2): 169–176. doi: 10.1111/ped.12008.
  38. Chiang MC, Lien R, Chu SM, et al. Serum lactate, brain magnetic resonance imaging and outcome of neonatal hypoxic ischemic encephalopathy after therapeutic hypothermia. Pediatr Neonatol 2016; 57 (1): 35–40.
  39. Murray DM, Boylan GB, Fitzgerald AP, et al. Persistent lactit acidosis in neonatal hypoxic-ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch Dis Child Fetal Neonatal Ed 2008; 93 (3): F183–186.
  40. Balushi AA, Guibault MP, Wintermark P. Secondary increase of lactate levels in asphyxiated newborns during hypothermia treatment: Reflect of suboptimal hemodynamics (a case series and review of the literature). AJP Rep 2016; 6 (1): e48–58.
  41. Polackova R, Salounova D, Kantor L. Lactate as an early predictor of psychomotor development in neonates with asphyxia receiving therapeutic hypothermia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017 Dec 4. doi: 10.5507/bp.2017.052. [Epub ahead of print].
  42. Del Rio R, Ochoa C, Alarcon A, et al. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: A systematic review. PLoS ONE 2016; 11 (11): e0165744.
  43. Lukášková J. Kontinuální monitorování elektrické mozkové aktivity u novorozenců. Ces-slov Pediat 2007; 62 (2): 91–97.
  44. Bakaj Zbrožková L, Hálek J, Michálková K, a kol. Radiologické nálezy u donošených novorozenců s hypoxicko-ischemickou encefalopatií. Cesk Slov Neurol N 2017; 80/113 (3): 291–299.
Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#