#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Role of Novel Microbiological Diagnostics in the Care for Patients with Cystic Fibrosis


Authors: P. Dřevínek 1;  L. Fila 2
Authors‘ workplace: Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff, CF0 3TL, Velká Británie vedoucí prof. J. Harwood, Ph. D. 1;  Pneumologická klinika UK 2. LF a FN Motol, Praha přednosta doc. MUDr. J. Musil, Ph. D. 2
Published in: Čes-slov Pediat 2008; 63 (2): 83-89.

Overview

Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infections that considerably affect their long-term prognosis. Burkholderia cepacia complex and Pseudomonas aeruginosa are the most severe pathogens that can cause epidemic outbreaks within a CF population. To prevent their potential spread, early and reliable diagnostics along with transmissible strain identification is required.

Molecular genetic methods allow highly sensitive and specific detection of bacteria belonging to B. cepacia complex and their speciation. Furthermore, the typing techniques help identify the strains capable of transmission among patients.

The Prague CF Centre has been combating the widespread infection of B. cepacia complex caused by the strain ST-32 for more than 10 years. The current drop in its incidence is a likely consequence of strict infection control, which is monitored by applying molecular microbiological tools.

Key words:
cystic fibrosis, microbiology, diagnostics, Burkholderia cepacia complex, Pseudomonas aeruginosa, epidemic strai


Sources

1. Aaron SD. Pseudomonas aeruginosa and cystic fibrosis – a nasty bug gets nastier. Respiration 2006;73: 16–17.

2. Vandamme P, Govan J, LiPuma JJ. Diversity and role of Burkholderia spp. In Coenye T, Vandamme P. Burkholderia: Molecular Microbiology and Genomics. Norfolk, UK: Horizon Bioscience, 2007: 1–28.

3. Govan JR, Brown AR, Jones AM. Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol. 2007;2: 153–164.

4. Pseudomonas aeruginosa infection in people with cystic fibrosis. The UK Cystic Fibrosis Trust Infection Control Group Report. Cystic Fibrosis Trust, 2004.

5. The Burkholderia cepacia complex. The UK Cystic Fibrosis Trust Infection Control Group Report. Cystic Fibrosis Trust, 2004.

6. Sibley CD, Rabin H, Surette MG. Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol. 2006;1: 53–61.

7. McMenamin JD, Zaccone TM, Coenye T, et al. Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. Chest 2000;117: 1661–1665.

8. Baldwin A, Mahenthiralingam E, Thickett KM, et al. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J. Clin. Microbiol. 2005;43: 4665–4673.

9. Mahenthiralingam E, Baldwin A, Drevinek P, et al. Multilocus sequence typing breathes life into a microbial metagenome. PLoS ONE 2006;1: e17.

10. Mahenthiralingam E, Bischof J, Byrne SK, et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 2000;38: 3165–3173.

11. Drevinek P, Hrbackova H, Cinek O, et al. Direct PCR Detection of Burkholderia cepacia complex and identification of its genomovars by using sputum as source of DNA. J. Clin. Microbiol. 2002;40: 3485–3488.

12. Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 1995;33: 2233–2239.

13. Mahenthiralingam E, Campbell ME, Henry DA, et al. Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis: analysis by randomly amplified polymorphic DNA fingerprinting. J. Clin. Microbiol. 1996;34: 2914–2920.

14. Nemec A, De Baere T, Tjernberg I, et al. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 2001;51: 1891–1899.

15. Sajjan US, Sun L, Goldstein R, et al. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J. Bacteriol. 1995;177: 1030–1038.

16. Mahenthiralingam E, Simpson DA, Speert DP. Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J. Clin. Microbiol. 1997;35: 808–816.

17. Liu L, Spilker T, Coenye T, et al. Identification by subtractive hybridization of a novel insertion element specific for two widespread Burkholderia cepacia genomovar III strains. J. Clin. Microbiol. 2003;41: 2471–2476.

18. Brisse S, Cordevant C, Vandamme P, et al. Species distribution and ribotype diversity of Burkholderia cepacia complex isolates from French patients with cystic fibrosis. J. Clin. Microbiol. 2004;42: 4824–4827.

19. LiPuma JJ, Spilker T, Gill LH, et al. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2001;164: 92–96.

20. Speert DP, Henry D, Vandamme P, et al. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg. Infect. Dis. 2002;8: 181–187.

21. Mahenthiralingam E, Vandamme P, Campbell ME, et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin. Infect. Dis. 2001;33: 1469–1475.

22. Sun L, Jiang RZ, Steinbach S, et al. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat. Med. 1995;1: 661–666.

23. Chen JS, Witzmann KA, Spilker T, et al. Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J. Pediatr. 2001;139: 643–649.

24. Biddick R, Spilker T, Martin A, et al. Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol. Lett. 2003;228: 57–62.

25. Notice to readers: manufacturer’s recall of nasal spray contaminated with Burkholderia cepacia complex. Centers for disease control and prevention 2004 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5311a8.htm.

26. van Pelt C, Verduin CM, Goessens WH, et al. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods. J. Clin. Microbiol. 1999;37: 2158–2164.

27. Drevinek P, Vosahlikova S, Cinek O, et al. Widespread clone of Burkholderia cenocepacia in cystic fibrosis patients in the Czech Republic. J. Med. Microbiol. 2005;54: 655–659.

28. Cheng K, Smyth RL, Govan JR, et al. Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348: 639–642.

29. Armstrong DS, Nixon GM, Carzino R, et al. Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am. J. Respir. Crit. Care Med. 2002;166: 983–987.

30. Speert DP, Campbell ME, Henry DA, et al. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am. J. Respir. Crit. Care Med. 2002;166: 988–993.

31. Cystic Fibrosis Foundation: Patient Registry Annual Data Report 2005. Cystic Fibrosis Foundation, 2005.

32. Vosahlikova S, Drevinek P, Cinek O, et al. High genotypic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis in the Czech Republic. Res. Microbiol. 2007;158: 324–329.

33. Drevinek P, Cinek O, Melter J, et al. Genomovar distribution of the Burkholderia cepacia complex differs significantly between Czech and Slovak patients with cystic fibrosis. J. Med. Microbiol. 2003;52: 603–604.

34. Vandamme P, Holmes B, Vancanneyt M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol. 1997;47: 1188–1200.

35. Vandamme P, Holmes B, Coenye T, et al. Burkholderia cenocepacia sp. nov. –a new twist to an old story. Res. Microbiol. 2003;154: 91–96.

36. Vandamme P, Mahenthiralingam E, Holmes B, et al. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol. 2000;38: 1042–1047.

37. Vermis K, Coenye T, LiPuma JJ, et al. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int. J. Syst. Evol. Microbiol. 2004;54: 689–691.

38. Coenye T, Mahenthiralingam E, Henry D, et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 2001;51: 1481–1490.

39. Vandamme P, Henry D, Coenye T, et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol. Med. Microbiol. 2002;33: 143–149.

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#