Maillard Reaction Products in Infant Nutrition
Authors:
K. Klenovicsová 1,2; G. Saavedra 3; C. Zumpe 3; V. Somoza 4; I. Birlouez-Aragon 3; L. Kovács 2; K. Šebeková 1
Authors‘ workplace:
Oddelenie klinickej a experimentálnej farmakoterapie, Slovenská zdravotnícka univerzita, Bratislava
prednosta doc. MUDr. M. Gajdoš, CSc.
1; 2. detská klinika DFNsP a LFUK, Bratislava
prednosta prof. MUDr. L. Kovács, DrSc., MPH
2; Polytechnický inštitút LaSalle Beauvais, Francúzsko
3; Nemecký inštitút potravinovej chémie, Garching, Nemecko
4
Published in:
Čes-slov Pediat 2008; 63 (10): 565-573.
Category:
Review
Overview
During food-processing under high temperatures, sugars, oxidized lipids and vitamin C spontaneously form with proteins substances called Maillard reaction products (MRPs). Industrial processing of artificial infant formulas (IF) requires heat-sterilization. Thus, content of MRPs in IF is much higher than in the human mother milk. Excessive intake of MRPs from thermally processed foods may exert biological effects in patients with diabetes or renal insufficiency, but also in healthy adults, e.g. increase of inflammatory markers and markers of oxidative damage, nephrotoxic and diabetogenic effects, weight gain, and thus may participate in the development or aggravation of obesity, atherosclerosis, nephropathy and diabetes. In infants, the high intake of MRPs in consumed artificial infant formulas represents a burden of potentially noxious substances. These results point at a new mechanism explaining the well-known physiological dominance of human breast milk over the artificial infant formula.
Key words:
thermally processed food, Maillard reaction products, CML, human breast milk, formula, hydrolyzed formula
Sources
1. Somoza V, Wenzel E, Weiss C, et al. Dose-dependent utilization of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in food samples. J. Chromatogr. 2006;A1140: 189–194.
2. Šebeková K, Somoza V. Dietary advanced glycation end products (AGEs) and their health effects – PRO. Mol. Nutr. Food Res. 2007;51: 1079–1084.
3. Somoza V, Lindenmeier M, Hofmann T, et al. Dietary bread crust advanced glycation end products bind to the receptor for AGEs in HEK-293 kidney cells but are rapidly excreted after oral administration to healthy and subtotally nephrectomized rats. Ann. N. Y. Acad. Sci. 2005;1043: 492–500.
4. Sandu O, Song K, Cai W, et al. Insulin resistance and type 2 diabetes high fat-fed mice are linked to high glycotoxin intake. Diabetes 2005;54: 2314–2319.
5. Šebeková K, Hofmann T, Boor P, et al. Renal effects of oral Maillard reaction products load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann. N. Y. Acad. Sci. 2005;1043: 482–491.
6. Peppa M, Brem H, Ehrlich P, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes 2003;52: 2805–2813.
7. Zheng F, He C, Cai W, et al. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab. Res. Rev. 2002;18: 224–237.
8. Hofmann SM, Dong HJ, Li Z, et al. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002;51: 2082–2089.
9. Peppa M, He C, Hattori M, et al. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes 2003;52: 1441–1448.
10. Lin RY, Choudhury RP, Ca W, et al. Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003;168: 213–220.
11. Liang M, Feng X, Hou FF. Food rich in advanced glycation end products accelerates renal fibrosis in the remnant kidney model via a redox-sensitive inflammatory pathway. J. Am. Kidney Dis. 2006;17, 745A (Abstract).
12. Wittmann I, Wagner Z, Mazák I, et al. Foods rich in advanced glycation and products (AGEs) induce microalbuminuria in healthy persons. Nephrol. Dial. Transplant. 2001;16, A106.
13. Uribarri J, Cai W, Sandu O, et al. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann. N. Y. Acad. Sci. 2005;1043: 461–466.
14. Negrean M, Stirban A, Horstmann T, et al. Dietary advanced glycation end products (AGEs) impair acute endothelium-dependent vasodilatation in patients with type 2 diabetes mellitus (T2DM). Diabetes 2005;54, A178 (Abstract).
15. Uribarri J, Peppa M, Cai W, et al. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J. Am. Soc. Nephrol. 2003;14: 728–731.
16. Maťašová K. Dlhodobý prínos optimálnej výživy novorodencov. Pediatria (Bratisl.) 2007;3: 143–146.
17. Kovács L, Krajčírová M, Čierna I. Moderné trendy vo výžive novorodencov a dojčiat. Bratislava: Datapress Prešov, 2003.
18. Stožický F, Schneidrová D, Aujezdská A, et al. Sledování výživy kojenců v prvních 6 měsících života v České republice v letech 1998–1999 (Multicentrická studie). Čes.-slov. Pediat. 2001;6: 344–348.
19. Müllerová D, Stožický F, Schneidrová D, et al. Výživové zvyklosti českých dětí v prvním půl roce života – zavádění příkrmů v praxi. Čes.-slov. Pediat. 2004;11: 561–565.
20. Tláskal P. Historie a současnost počáteční dětské výživy. Pediatr. pro Praxi 2008;2: 86–92.
21. Birlouez-Aragon I, Pischetsrieder M, Leclére J, et al. Assessment of protein glycation markers in infant formulas. Food Chemistry 2004;87: 253–259.
22. Gliguem H, Birlouez-Aragon I. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation and glycation in fortified milks. J. Dairy Sci. 2005;88: 891–899.
23. Maillard LC. Action des acides amines sur les sucres, formation des melaniodines par voie methodique. CR Acad. Sci. 1912;154: 66–68.
24. Birlouez-Aragon I, Locquet N, De St. Louvent E, et al. Evaluation of the Maillard reaction in infant formulas by means of front-face fluorescence. Ann. N. Y. Acad. Sci. 2005;1043: 308–318.
25. Henle T. A food chemist’s view of advanced glycation end-products. Perit. Dial. Int. 2001;3: 125–130.
26. Lingnert H, Eriksson CE. Antioxidative effects of Maillard reaction products. Prog. Food Nutr. Sci. 1981;5: 453–466.
27. Caemmerer B. Antioxidative activity of melanoidins. In Ames JM (eds.). Melanoidins in Food and Health. European Commission COST Action 919. Eur 19684, 2000: 49–60.
28. Marko D, Kemeny M, Bernady E, et al. Studies on the inhibition of tumor cell growth and microtubule assembly by 3-hydroxy-4-(E)-(2-furyl)methylidene)methyl-3-cyclopentene-1,2-dione, an intensively colored Maillard reaction product. Food Chem. Toxicol. 2002;40: 9–18.
29. Faist V, Wenzel E, Randel G, et al. In vitro and in vivo studies on the metabolic transit of N-carboxymethyllysine. Czech J. Food Sci. 2003;18: 116–119.
30. Billaud C, Maraschin C, Chow JN, et al. Maillard reaction products as „natural antibrowning“ agents in fruits and vegetables technology. Mol. Nutr. Food Res. 2005;49: 656–662.
31. Hiramoto K, Sekiguchi K, Ayuha K, et al. DNA breaking activity and mutagenicity of soy sauce: characterization of the active components and identification of 4-hydroxy-5-methyl-3(2H)-furanone. Mutat. Res. 1996;359: 119–132.
32. Vlassara H, Cai W, Crandall J, et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA 2002;9: 15596–15601.
33. Bucala R, Tracey KJ, Cerami A. AGEs quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest. 1991;87: 432–438.
34. Somoza V, Wenzel E, Lindenmeier M, et al. Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidative defense parameters in vivo. J. Agric. Food Chem. 2005;53: 8176–8182.
35. Chuyen NV, Ijichi K, Umetsu H, et al. Antioxidative properties of products from amino acids or peptides in the reaction with glucose. Adv. Exp. Med. Biol. 1998;434: 201–212.
36. Chuyen NV, Arai H, Nakanishi T, et al. Are food advanced glycation end products toxic in biological systems? Ann. N. Y. Acad. Sci. 2005;1043: 467–473.
37. Miyata T, Maeda K, Kurokawa K, et al. Oxidation conspires with glycation to generate noxious advanced glycation end products in renal failure. Nephrol. Dial. Transplant. 1997;12: 255–258.
38. Anderson MM, Heinecke JW. Production of Nε-carboxymethyllysine is impaired in mice deficient in NADPH oxidase: a role of phagocyte-derived oxidants in the formation of advanced glycation end products during inflammation. Diabetes 2003;52: 2137–2143.
39. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 1995;46: 223–234.
40. Thornalley PJ. The glyoxalase system: new developments toward functional characterization of a metabolic pathway fundamental to biological life. Biochem. J. 1990;269: 1–11.
41. Gugliucci A, Bendayana M. Renal fate of circulating advanced glycation end products (AGEs): Evidence for absorption and catabolism of AGEs-peptides by renal proximal tubular cells. Diabetologia 1996;39: 149–160.
42. Smedsrod B, Melkko J, Araki N, et al. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem. J. 1997;322: 567–573.
43. Šebeková K, Kupčová V, Schinzel R, et al. Markedly elevated levels of plasma advanced glycation end products in patients with liver cirrhosis – amelioration by liver transplantation. J. Hepatol. 2002;36: 66–71.
44. Vlassara H. Advanced glycation in diabetic renal and vascular disease. Kidney Int. 1995;48: 43–44.
45. Thornalley PJ. Glyoxalase I-structure, function and a critical role in the enzymatic defense against glycation. Biochem. Soc. Trans. 2003;31: 1343–1348.
46. Pischetsrieder M, Eidel W, Munch G, et al. N(2)-(1-carboxyethyl)-deoxyguanosine, a nonenzymatic glycation adduct of DNA, induces single strand brakes and increases mutation frequencies. Biochem. Biophys. Res. Commun. 1999;264: 544–549.
47. Schmidt AM, Hori O, Cao R, et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes 1996;45: 77–80.
48. Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor Nuclear Factor-κB. Diabetes 2001;50: 2792–2808.
49. Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 2005;83: 876–886.
50. Rashid G, Benchetrit S, Fishman D, et al. Effect of advanced glycation end-products on gene expression and synthesis of TNF-α and endothelial nitric oxide synthase by endothelial cells. Kidney Int. 2004;66: 1099–1106.
51. Ferrer E, Alegria A, Farré R, et al. Evolution of available lysine and furosine contents in milk-based formulas throughout the self-life storage period. J. Sci. Food Agric. 2003;83: 465–472.
52. Leclère J, Birlouez-Aragon I. Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chemistry 2002;76: 491–499.
53. Sarria B, Lopez-Fandino R, Vaquero P. Protein nutritive utilization in rats fed powder and liquid infant formulas. Food Sci. Technol. Intern. 2000;6: 9–16.
54. Rerat A, Calmes R, Vaissade P, et al. Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig. Significance for man. Eur. J. Nutr. 2002;41: 1–11.
55. Šebeková K, Saavedra G, Zumpe C, et al. Plasma concentration and urinary excretion of Nε –(carboxymethyl)lysine in breast milk – and formula-fed infants. Ann. N. Y. Acad. Sci. 2008;1126: 177–180.
56. Dittrich R, Hoffmann I, Stahl P, et al. Concentrations of N-carboxymethyllysine in human breast milk, infant formulas, and urine of infants. J. Agric. Food Chem. 2006;54: 6924–6928.
57. Bosch L, Alegria A, Farré R. Milk-cereal based infant foods: formation of furosine during storage, Cost Action 927-IMARS, The Maillard Reaction in Food and Medicine 2006, Neapol, Italy, May 24–27 , Abstracts, p.91.
58. Hellwig M, Hultsh C, Grunwald S, et al. Interaction of Maillard reaction products with intestinal transport systems. 9th International Symposium on the Maillard Reaction 2007, Munich, Germany, September 1–5, Abstracts, p. 164.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2008 Issue 10
Most read in this issue
- Henoch-Schönlein Purpura from the Standpoint of Preventive Corticoid Administration
- Assessment of Clinical Signs of Intracranial Hypertension in Newborns and Infants with Hydrocephalus in Relationship to the Indication of Drainage Procedure
- Prader-Willi Syndrome in Newborns – Two Case Reports
- Heterotopy of Stomach Mucosa – Review of Literature and Our Experience