#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Spondyloarthritis: genetic burden and heritability


Authors: K. Grobelná
Authors‘ workplace: Revmatologický ústav, Revmatologická klinika 1. LF UK, Praha
Published in: Čes. Revmatol., 25, 2017, No. 2, p. 85-90.
Category: Review Article

Overview

Spondyloarthropathies (spondyloarthritides, SpA) belong to inflammatory rheumatologic diseases affecting the axial skeleton and peripheral joints. However, they can also manifest with extra-articular symptoms. According to prevailing disability we currently divide them into an axial and peripheral form. The longest known gene association of axial spondyloarthritis is the presence of HLA-B27 antigen. However, this antigen occurs in 6–8 % of the general population and only 2 % of the carriers of this antigen develop SpA during their lifespan. The prevalence of HLA-B27 antigen and the associated prevalence of ankylosing spondylitis (AS) differ not only geographically but also across ethnic groups. Other antigens of the MHC complex (DPA1 or DRB1) as well as gene variants of intracellular proteins (ERAP1, ERAP2, LNPEP, NPEPPS and others) have been found in genetic analyses, the presence of which increases the risk for developing the disease. In spite of great effort, however, only a small part of the heritability of axial spondyloarthritis has been elucidated to date. In peripheral forms, especially in psoriatic arthritis, frequent association with HLA-B27 antigen is also known, as well as an association with HLA-Cw6 antigens and other MHC complex antigens (HLA-B39 and HLA-DQw3). Other studies have shown novel gene variants of proteins that affect TNFα secretion or IL-17 immune response activation (IL-12B, IL-23R, TNIP1, TRAF3IP2, or NFKBIA) that could affect the development of the disease.

Key words:
Spondyloarthritis, heritability, ankylosing spondylitis, psoriatic arthritis


Sources

1. Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007; 369: 1379 – 90.

2. Rudwaleit M, van der Heijde D, Landewe R, Akkoc N, Brandt J, et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis 2011; 70: 25–31.

3. 3. Mandl P, Navarro-Compán V, Terslev L, et al. EULAR recommen-dations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Annals of the Rheumatic Diseases Published Online First: 02 April 2015. doi:10.1136/annrheumdis-2014-206971.

4. Carter N, Williamson L, Kennedy LG, Brown MA, Wordsworth BP. Susceptibility to ankylosing spondylitis. Rheumatology (Oxford, England) 2000; 39: 445.

5. Ben Radhia K, Ayed-Jendoubi S, Sfar I, Ben Romdhane T, Makhlouf M, et al. Distribution of HLA-B*27 subtypes in Tunisians and their association with ankylosing spondylitis. Joint Bone Spine Rev Rhum 2008; 75: 172–5.

6. Lopez-Larrea C, Sujirachato K, Mehra NK, Chiewsilp P, Isarangkura D, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45: 169–76.

7. MacLean IL, Iqball S, Woo P, Keat AC, Hughes RA, et al. HLA-B27 subtypes in the spondarthropathies. Clin Exp Immunol 1993; 91: 214–9.

8. Reveille, J.D., Inman, R., Khan, M.A., Yu, D.T.K., Jin, L. Family studies in ankylosing spondylitis: microsatellite analysis of 55 concordant sib pairs. J Rheumatol. 2000; 27:5.

9. van der Linden SM, Valkenburg HA, de Jongh BM, Cats A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 1984; 27: 241–9.

10. Wei JC, Tsai WC, Lin HS, Tsai CY, Chou CT. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford) 2004; 43: 839–42.

11. Diaz-Pena R, Aransay AM, Bruges-Armas J, Lopez-Vazquez A, Rodriguez-Ezpeleta N, et al. Fine mapping of a major histocompatibility complex in ankylosing spondylitis: association of the HLA-DPA1 and HLA-DPB1 regions. Arthritis Rheum 2011; 63: 3305–12.

12. Breban M. Genetic studies of spondylarthropathies. French Spondylarthropathy Genetic Study Group. Ann Med Interne 1998; 149: 142–4.

13. Sims AM, Barnardo M, Herzberg I, Bradbury L, Calin A, et al. Non-B27 MHC associations of ankylosing spondylitis. Genes Immunity 2007; 8: 115–23.

14. Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol 2014; 57: 2–11.

15. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nature Genetics 2013; 45: 730–8.

16. Alvarez-Navarro C, Lopez de Castro JA. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol 2014; 57: 12–21.

17. Lee YH, Song GG. Associations between ERAP1 polymorphisms and susceptibility to ankylosing spondylitis: a meta-analysis. Clin Rheumatol 2016; 35: 2009–15.

18. Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genet 2010; 42: 123–7.

19. Rahman P, Inman RD, Gladman DD, Reeve JP, Peddle L, Maksymowych WP. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum 2008; 58: 1020–5.

20. Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P.Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum 2008; 58: 2307–17.

21. Smith JA, Colbert RA. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatology (Hoboken, 2014; 66: 231–41.

22. Gladman DD. Psoriatic arthritis. Rheum Dis Clin North Am 1998; 24: 829–44.

23. Prey S, Paul C, Bronsard V, Puzenat E, Gourraud PA, et al.Assessment of risk of psoriatic arthritis in patients with plaque psoriasis: a systematic review of the literature. J Eur Acad Dermatol Venerol 2010; 24 (Suppl 2): 31–5.

24. Paparo F, Revelli M, Semprini A, Camellino D, Garlaschi A, et al. Seronegative spondyloarthropathies: what radiologists should know. Radiol Med 2014; 119: 156–63.

25. Gladman D, Antoni C, Mease P, Clegg D, Nash P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Annals of the Rheumatic Diseases. 2005;64(Suppl 2):ii14-ii17. doi:10.1136/ard.2004.032482.

26. Moll JM, Wright V. Familial occurrence of psoriatic arthritis. Ann Rheum Dis 1973; 32: 181–201.

27. Liu Y, Helms C, Liao W, Zaba LC, Duan S, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 2008; 4: e1000041.

28. Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet 2015; 97: 816–36.

29. Reich K, Kruger K, Mossner R, Augustin M. Epidemiology and clinical pattern of psoriatic arthritis in Germany: a prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis. Br J Dermatol 2009; 160: 1040–7.

30. Soltani-Arabshahi R, Wong B, Feng BJ, Goldgar DE, Duffin KC, Krueger GG. Obesity in early adulthood as a risk factor for psoriatic arthritis. Arch Dermatol 2010; 146: 721–6.

31. Castelino M, Barton A. Genetic susceptibility factors for psoriatic arthritis. Curr Opin Rheumatol 2010; 22: 152–6.

32. Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NV, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet 2006; 78: 827–51.

33. Gladman DD, Farewell VT, Pellett F, Schentag C, Rahman P.HLA is a candidate region for psoriatic arthritis. evidence for excessive HLA sharing in sibling pairs. Hum Immunol 2003; 64: 887–9.

34. Gladman DD, Farewell VT. The role of HLA antigens as indicators of disease progression in psoriatic arthritis. Multivariate relative risk model. Arthritis Rheum 1995; 38: 845–50.

35. Gonzalez S, Martinez-Borra J, Torre-Alonso JC, Gonzalez-Roces S, Sanchez del Rio J, et al. The MICA-A9 triplet repeat polymorphism in the transmembrane region confers additional susceptibility to the development of psoriatic arthritis and is independent of the association of Cw*0602 in psoriasis. Arthritis Rheum 1999; 42: 1010–6.

36. Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet 2010; 42: 1000–4.

37. Duffin KC, Freeny IC, Schrodi SJ, Wong B, Feng BJ, et al. Association between IL13 polymorphisms and psoriatic arthritis is modified by smoking. J Investigative Dermatol 2009; 129: 2777–83.

38. Huffmeier U, Lascorz J, Bohm B, Lohmann J, Wendler J, et al. Genetic variants of the IL-23R pathway: association with psoriatic arthritis and psoriasis vulgaris, but no specific risk factor for arthritis. Journal Investigative Dermatol 2009; 129: 355–8.

39. Mease P, McInnes IB. Secukinumab: A New Treatment Option for Psoriatic Arthritis. Rheumatol Ther 2016; 3: 5–29.

40. Soubrier M, Pereira B, Frayssac T, Abdi D, Couderc M, et al.Psoriatic arthritis treated by anti-TNFs: a monocentric trial of 102 cases in Auvergne (France).Clin Exp Rheumatol. 2016 Nov-Dec;34(6):1059-1064. Epub 2016 Aug 31

41. Hamdulay SS, Glynne SJ, Keat A. When is arthritis reactive? Postgrad Med J 82: 446–53.

42. Leirisalo-Repo M, Sieper J. Chapter 5 - Reactive spondyloarthritis: epidemiology, clinical features, and treatment A2 - Weisman, Michael H. In Ankylosing Spondylitis and the Spondyloarthropathies, ed. Dvd Heijde, JD Reveille:53-64. Philadelphia: Mosby 2006 Number of 53–64.

43. Peluso R, Di Minno MND, Iervolino S, Manguso F, Tramontano G, et al. Enteropathic spondyloarthritis: from diagnosis to treatment. Clin Develop Immunol 2013: 631408.

44. Yuksel I, Ataseven H, Basar O, Koklu S, Ertugrul I, et al. Peripheral arthritis in the course of inflammatory bowel diseases. Digestive Dis Sciences 2011; 56: 183–7.

45. Mallas EG, Mackintosh P, Asquith P, Cooke WT. Histocompatibility antigens in inflammatory bowel disease. Their clinical significance and their association with arthropathy with special reference to HLA-B27 (W27). Gut 1976; 17: 906–10.

46. Rodríguez-Reyna TS, Martínez-Reyes C, Yamamoto-Furusho JK. Rheumatic manifestations of inflammatory bowel disease. W J Gastroenterol 2009; 15: 5517–24.

47. Orchard TR, Thiyagaraja S, Welsh KI, Wordsworth BP, Hill Gaston JS, Jewell DP. Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterol 2000; 118: 274–8.

48. Yamamoto-Furusho JK. Genetic factors associated with the development of inflammatory bowel disease. W J Gastroenterol 2007; 13: 5594–7.

49. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–3.

50. Miceli-Richard C, Zouali H, Lesage S, Thomas G, Hugot JP, et al. CARD15/NOD2 analyses in spondylarthropathy. Arthritis Rheum 2002; 46: 1405–6.

51. Van Praet L, Van den Bosch F, Mielants H, Elewaut D. Mucosal inflammation in spondylarthritides: past, present, and future. Curr Rheumatol Reports 2011; 13: 409–15.

Labels
Dermatology & STDs Paediatric rheumatology Rheumatology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#