CARIOGENIC MICROFLORA IN CHILDREN WITH EARLY CHILDHOOD CARIES AND THEIR MOTHERS
Original article – clinical study
Authors:
M. Bartošová; M. Kukletová; L. Izakovičová Hollá
Authors‘ workplace:
Stomatologická klinika, Lékařská fakulta Masarykovy univerzity, a Fakultní nemocnice u svaté Anny, Brno
Published in:
Česká stomatologie / Praktické zubní lékařství, ročník 121, 2021, 1, s. 19-27
Category:
Original articles
Overview
Aim: Early childhood caries (ECC) is defined as the presence of one or more carious lesions (noncavitated or cavitated) or filled tooth surfaces in any primary tooth or missing teeth (due to caries) in children below six years of age. Cariogenic oral bacteria Streptococcus mutans, Lactobacillus spp. and Actinomyces spp. were found to be involved in the caries development. The early phase of the caries development is associated with the presence of visible plaque on the teeth surface and S. mutans occurrence in the oral cavity, with the most critical period for S. mutans colonization from 19–31 months of age. The aim of this study was to identify the cariogenic bacteria Streptococcus mutans, Lactobacillus spp., and Actinomyces spp. in children with early childhood caries and their mothers.
Methods: A total of 80 mother/child pairs (child mean age 3.8 years ± 1.14 SD) were included in the study. Children were orally examined in a dental chair using a probe, mirror and a good light source. In children, the dmft index was identified, in mothers, the age, the presence of plaque, the number of caries, fillings, extracted teeth, whether they visit their dentists regularly and whether they lick their children´s spoon or pacifier were determined. The dental plaque samples for the assessment of the presence of S. mutans, Lactobacillus spp. and Actinomyces spp. were taken from the surface of carious teeth in children and surface of all teeth in mothers, always using sterile cotton swabs. The presence of cariogenic bacteria was identified by the CarioGene® test (Protean s.r.o., Dobrá voda, Czech Republic) and the results were statistically evaluated.
Results: The presence of S. mutans was identified in 27 mother/child pairs, negative finding in both mother and child was found in 32 cases. The absence of Lactobacillus spp. in the children and their mothers was detected in 13 pairs, the positive finding in both in 46 cases. Actinomyces spp. was detected in both the child and mother in 67 cases. We demonstrated a significant relationship between the presence of S. mutans and Lactobacillus spp. in mothers and their children (p < 0.0001 and p < 0.00001). When mothers were split into the group who licked the spoon at feeding their and the group who did not, the results were significant only in mothers from the first group (p < 0.001). However, the results of Actinomyces spp. were not statistically significant (p > 0.05).
Conclusion: The results of the study demonstrated that the source of acquiring cariogenic bacteria in children suffering from ECC might be through mothers. The potential way of transmission may be licking the infant´s spoon.
Keywords:
ECC – Streptococcus mutans – Lactobacillus spp. – Actinomyces spp.
Sources
1. American Academy of Pediatric Dentistry (AAPD). Definition of Early Childhood Caries (ECC). [cit. 15. 12. 2018]. Dostupné z: http://www.aapd.org/assets/1/7/d_ecc.pdf.
2. Naidu R, Nunn J, Donnelly-Swift E. Oral health-related quality of life and early childhood caries among preschool children in Trinidad. BMC Oral Health. 2016; 16(1): 128.
3. Filstrup L, Briskie D, da Fonseca M, Lawrence L, Wandera A, Inglehart M. Early childhood caries and quality of life: child and parent perspectives. Pediatr Dent. 2003; 25(5): 31–440.
4. Hajishengallis E, Parsaei Y, Klein MI, Koo H. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017; 32(1): 24–34. doi: 10.1111/omi.12152.
5. Lenčová E, Broukal Z. Prevalence zubního kazu u českých předškolních dětí. Čes Stomatol. 2012; 112(6): 168–172.
6. Handzel J. Prevence časného zubního kazu dítěte. Pediatrie pro praxi. 2008; 9(1): 61–62.
7. Merglová V, Ivančaková R. Zubní kaz a jeho prevence v časném dětském věku. 1. vydání. Praha: Česká stomatologická komora; 2009.
8. LeResche L. Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors. Crit Rev Oral Biol Med. 1997; 8(3): 291–305. doi: 10.1177/10454411970080030401.
9. Featherstone J. Caries prevention and reversal based on the caries balance. Pediatr Dent. 2006; 28(2): 128–132.
10. Axelsson, P. Chapter 2, Chapter 3. In: Axelsson, P. Diagnosis and risk prediction of dental caries. 2. vydání. Berlin: Quintessence; 2000, 43–86, 91–146.
11. Parisotto T, Steiner-Oliveira C, Silva C, Rodrigues L, Nobre-dos-Santos M. Early childhood caries and mutans streptococci: a systematic review. Oral Health Prev Dent. 2010; 8(1): 59–70.
12. Vachirarojpisan T, Shinada K, Kawaguchi Y, Laungwechakan P, Somkote T, Detsomboonrat P. Early childhood caries in children aged 6–19 months. Community Dent Oral Epidemiol. 2004; 32: 133–142.
13. Xu H, Hao W, Zhou Q, et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS ONE. 2014;9:(2). doi: 10.1371/journal.pone.0089269.
14. Mosci F, Perito S, Bassa S, Capuano A, Marconi P. The role of Streptococcus mutans in human caries. Minerva Stomatol. 1990; 39(5): 413–429.
15. Cvitkovitch D. Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med. 2001; 12(3): 217–243.
16. Loesche W. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986; 50(4): 353–380.
17. Torrey J, Reese K. Initial aerobic flora of newborn infants. Am J Dis Child. 1944; 67: 89–99.
18. Thakur R, Singh M, Chaudhary S, Manuja N. Effect of mode of delivery and feeding practices on acquisition of oral Streptococcus mutans in infants. Int J Paediatr Dent. 2012; 22(3): 197–202.
19. Pattanaporn K, Saraithong P, Khongkhunthian S, et al. Mode of delivery, mutans streptococci colonization, and early childhood caries in three- to five-year-old Thai children. Community Dent Oral Epidemiol. 2013; 41(3): 212–223. doi: 10.1111/cdoe.12013.
20. Caufield P, Cutter G, Dasanayake A. Initial acquisition of mutans streptococci by infant: evidence for a window of infectivity. J Dent Res. 1993; 72: 37–45.
21. Milgrom P, Riedy C, Weinstein P, Tanner A, Manibusan L, Bruss J. Dental caries and its relationship to bacterial infection, hypoplasia, diet and oral hygiene in 6- to 36-month-old children. Community Dent Oral Epidemiol. 2000; 28: 295–306.
22. Nogueira RD, Sesso ML, Borges MC, Mattos-Graner RO, Smith DJ, Ferriani VP. Salivary IgA antibody responses to Streptococcus mitis and Streptococcus mutans in preterm and fullterm newborn children. Arch Oral Biol. 2012; 57: 647–653. doi: 10.1016/j.archoralbio.2011.11.011 PubMed: 22169809.
23. Gomez A, Nelson KE. The oral microbiome of children: Development, disease and implications beyond oral health. Microb Ecol. 2017; 73: 492–503. doi:10.1007/s00248-16-0854-1.
24. Kukletová M, Izakovičová Hollá L, Broukal Z, Musilová K, Kukla L. Vztah mezi ukazateli orálního zdraví u 13–15letých dětí skupiny ELSPAC Brno a stupněm vzdělání jejich rodičů. Čes Stomatol. 2013; 113(1): 8–13.
25. Chaffee BW, Gansky SA, Weintraub JA, Featherstone JDB, Ramos-Gomez FJ. Maternal oral bacterial levels predict early childhood caries development. J Dent Res. 2014; 93(3): 238–244.
26. Vadiakas G. Case definition, aetiology and risk assessment of early childhood caries (ECC): A revisited review. Eur Arch Paediatr Dent. 2008; 9(3): 114–125.
27. Mitchell S, Ruby J, Moser S, Momeni S, Smith A, Osgood R, Litaker M, Childers N. Maternal transmission of mutans Streptococci in severe-early childhood caries. Pediatr Dent. 2009; 31(3): 193–201.
28. Mattos-Graner RQ, Li Y, Caufield PW, Duncan M, Smith DJ. Genotypic diversity of mutans streptococci in Brazilian nursery children suggests horizontal transmission. J Clin microbiol. 2001; 39: 2313–2316.
29. Tedjosasongk U, Kozai K. Initial acquisition and transmission of mutans streptoccoci in children at day nursery. J Dent Child. 2002; 69: 284–288, 234–235.
30. Douglass JM, Li Y, Tinaoff N. Association of mutans streptococci between caregivers and their children. Pediatr Dent. 2008; 30: 375–387.
31. Loe H, Silness J. Periodontal disease in pregnancy. Prevalence and severity. Acta Odontol Scand. 1963; 21: 533–551.
32. Milnes A, Bowden G. The microflora associated with developing lesions of nursing caries. Caries Res. 1985; 19(4): 289–297.
33. Macpherson L, MacFarlane T, Stephen K. An intra-oral appliance study of the plaque microflora associated with early enamel demineralization. J Dent Res. 1990; 69(11): 1712–1716.
34. van Houte J, Gibbs G, Butera C. Oral flora of children with "nursing bottle caries". J Dent Res. 1982; 61(2): 382–385.
35. Berkowitz R, Turner J, Hughes C. Microbial characteristics of the human dental caries associated with prolonged bottlefeeding. Arch Oral Biol. 1984; 29(11): 949–951.
36. Boue D, Armau E, Tiraby G. A bacteriological study of rampant caries in children. J Dent Res. 1987; 66(1): 23–28.
37. Xiao J, Grier A, Faustoferri RC, et al. Association between oral candida and bacteriome in children with severe ECC. J Dent Res. 2018; 97(13): 1468–1476. doi: 10.1177/0022034518790941.
38. Liu Y, Zou J, Shang R, Zhou XD. Genotypic diversity of Streptococcus mutans in 3- to 4-year-old Chinese nursery children suggests horizontal transmission. Arch Oral Biol. 2007; 52(9): 876–881. doi: 10.1016/j. archoralbio.2007.03.004.
39. Lembo FL, Longo PL, Ota-Tsuzuki C, Rodrigues CR, Mayer MP. Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children. Oral Microbiol Immunol. 2007; 22(5): 313–319. doi: 10.1111/j.1399-302X.2007.00361.x.
40. Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental caries from a molecular microbiological perspective. Caries Res. 2013; 47(2): 89–102. doi: 10.1159/000345367.
41. Takahashi N, Yamada T. Glucose and lactate metabolism by Actinomyces naeslundii. Crit Rev Oral Biol Med. 1999; 10(4): 487–503.
42. Takahashi N, Washio J, Mayanagi G. Metabolomic approach to oral biofilm characterization – A future direction of biofilm research. J Oral Biosci. 2012; 54: 138–143.
43. Dige I, Raarup M, Nyengaard J, Kilian M, Nyvad B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology. 2009; 155(7): 2116–2126. doi: 10.1099/mic.0.027706-0.
44. Dige I, Nilsson H, Kilian M, Nyvad B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci. 2007; 115(6): 459–467.
45. Milén A, Tala H. Social inequity in oral health – a newly awakened problem. Proc Finn Dent Soc. 1986; 82(5–6): 260–266.
46. Tanner A, Mathney J, Kent R, et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol. 2011; 49(4): 1464–1474. doi: 10.1128/JCM.02427–10.
47. Tang G, Yip H, Samaranayake L, Luo G, Lo E, Teo C. Actinomyces spp. in supragingival plaque of ethnic Chinese preschool children with and without active dental caries. Caries Res. 2003; 37(5): 381–390.
48. Aas J, Griffen A, Dardis S, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008; 46(4): 1407– 1417. doi: 10.1128/JCM.01410–07.
49. Lencová E, Pikhart H, Broukal Z, Tsakos G. Relationship between parental locus of control and caries experience in preschool children – cross-sectional survey. BMC Public Health. 2008; 8(1). doi: 10.1186/1471-2458- 8-208.
50. Bartosova M, Svetlak M, Kukletova M, Borilova Linhartova P, Dusek L. Emotional stimuli candidates for behavioural intervention in the prevention of early childhood caries: a pilot study. BMC Oral Health. 2019; 19(1): 33. doi: 10.1186/s12903-019-0718-4.
Labels
Maxillofacial surgery Orthodontics Dental medicineArticle was published in
Czech Dental Journal
2021 Issue 1
Most read in this issue
-
MANDIBULAR FRACTURES AND THEIR RELATION TO FACIAL SKELETON TRAUMA AND CERVICAL SPINE DAMAGE
Original article – retrospective study - SELECTED PROPERTIES OF CONTEMPORARY ENDODONTIC SEALERS: PART 2
-
VÝSKYT NEDIAGNOSTIKOVANÝCH ORTODONTICKÝCH ANOMÁLIÍ NA ZÁKLADNÍCH ŠKOLÁCH OLOMOUCKÉHO KRAJE
Původní práce – epidemiologická studie -
CARIOGENIC MICROFLORA IN CHILDREN WITH EARLY CHILDHOOD CARIES AND THEIR MOTHERS
Original article – clinical study