Metal complexes in medicine and pharmacy – the past and the present III
Authors:
Ladislav Habala; Jindra Valentová
Authors‘ workplace:
Katedra chemickej teórie liečiv, Farmaceutická fakulta UK
Published in:
Čes. slov. Farm., 2020; 69, 121-129
Category:
Review Articles
Overview
Bioactive metal complexes represent a promising and rapidly evolving area of pharmacotherapy. After the first part of our survey on metallopharmaceuticals dealing with antimicrobial activity of metal complexes and their application in diagnostics and the second part dedicated to anticancer properties of these compounds, this third and last part of the review focuses on several other applications of metals in therapy (mainly on the therapy of rheumatoid arthritis, some mental diseases, diabetes, as well as on chelation therapy). Following a brief account of the historical development of clinical use of the respective category of drugs, their chemical properties, toxicity, clinical applications and mechanism of action are discussed. The aim of this brief survey is to provide basic outline of the area of metallopharmacy, aimed at specialists in pharmacy and chemistry as well as at the general educated public.
Keywords:
bioinorganic chemistry – metal complexes – metallopharma-ceuticals – Gold – vanadium – Lithium – chelation therapy
Sources
1. Raubenheimer H. G., Schmidbaur H. The late start and amazing upswing in gold chemistry. J. Chem. Ed. 2014; 91, 2024‒2036.
2. Faa G., Gerosa C., Fanni D., Lachowicz J. I., Nurchi V. M. Gold – old drug with new potentials. Curr. Med. Chem. 2018; 25, 75‒84.
3. Forestier R. L’aurothérapie dans les rhumatismes chroniques. Bulletins et memoires de la Société medicale des hôpitaux de Paris 1929; 44, 323‒327.
4. Forestier R. The treatment of rheumatoid arthritis with gold salts injections. Lancet 1932; 219, 441‒444.
5. Bullock J., Rizvi S. A. A., Saleh A. M., Ahmed S. S., Do D. P., Ansari R. A., Ahmed J. Rheumatoid arthritis: a brief overview of the treatment. Med. Princ. Pract. 2018; 27, 501‒507.
6. Naggar M. E., Shehadi I., Abdou H. E., Mohamed A. A. Gilded hope for medicine. Inorganics 2015; 3, 139‒154.
7. Kean W. F., Hart L., Buchanan W. W. Auranofin. Br. J. Rheumatol. 1997; 36, 560‒572.
8. Eisler R. Chrysotherapy: a synoptic review. Inflamm. Res. 2003; 52, 487‒501.
9. Brown C. L., Whitehouse M. W., Tiekink E. R. T., Bushell G. R. Colloidal metallic gold is not bio-inert. Inflammopharmacology 2008; 16, 133‒137.
10. Rovenský J., Rybár I., Mičeková D., Žlnay D., Lukáč J., Poprac P. Farmakoterapeutické postupy pri reumatoidnej artritíde. Via Pract. 2005; 2, 66‒74.
11. Roder C., Thomson M. J. Auranofin: repurposing an old drug for a golden new age. Drugs R. D. 2015; 15, 13‒20.
12. Mukherjee B., Patra B., Mahapatra S., Banerjee P., Tiwari A., Chatterjee M. Vanadium – an element of atypical biological significance. Toxicol. Lett. 2004; 150, 135‒143.
13. Rehder D. The role of vanadium in biology. Metallomics 2015; 7, 730‒742.
14. Rehder D. Vanadium in health issues. ChemTexts 2018; 4, 1‒7.
15. Lyonett B., Martz M., Martin E. Ľ emploi therapeutique des derivés du vanadium. La Presse Médicale 1899; 32, 191‒192.
16. Thompson K. H., Lichter J., LeBel C., Scaife M. C., McNeill J. H., Orvig C. Vanadium treatment of type 2 diabetes: A view to the future. J. Inorg. Biochem. 2009; 103, 554‒558.
17. Pessoa J. C., Etcheverry S., Gambino D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015; 301–302, 24–48.
18. Scior T., Guevara-Garcia J. A., Do Q.-T., Bernard P., Laufer S. Why antidiabetic vanadium complexes are not in the pipeline of “Big Pharma” drug research? A critical review. Curr. Med. Chem. 2016; 23, 2874‒2891.
19. Levina A., Lay P. A. Metal-based anti-diabetic drugs: advances and challenges. Dalton Trans. 2011; 40, 11675‒11686.
20. Wang Z. Q., Cefalu W. T. Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr. Diabetes Rep. 2010; 10, 145‒151.
21. Bauer M., Gitlin M. The Essential Guide to Lithium Treatment. Springer International Publishing Switzerland 2016.
22. Garrod A. B. The Nature and Treatment of Gout and Rheumatic Gout. London: Walton and Maberly 1859.
23. Lange C. Om Periodisk e Depressionstilstande og deres Patogenese. Copenhagen: Jacob Lunds Forlag 1886.
24. Cade J. F. Lithium salts in the treatment of psychotic excitement. Med. J. Aust. 1949; 2, 349–351.
25. Baastrup P. C., Schou M. Lithium as a prophylactic agent: its effect against recurrent depression and manic-depressive psychosis. Arch. Gen. Psychiatry 1967; 16, 162–172.
26. Herman E., Praško J., Hovorka J. Místo stabilizátorů nálady v léčbě bipolární poruchy. Psychiat. pro Praxi 2006; 4, 161–164.
27. Makara-Studzińska M., Koślak A., Morylowska-Topolska J., Urbańska A. Lithium therapy – the effectiveness of the medicine, side symptoms, complications and their influence on the quality of the life in affective diseases. J. Elementol. 2010; 15, 393–403.
28. Virčík Ľ., Rusínová E. Vedľajšie účinky liečby lítiom, ich mechanizmy a zvládnutie. Čes. a slov. Psychiat. 2005; 101, 36‒39.
29. Birch N. J. Inorganic pharmacology of lithium. Chem. Rev. 1999; 99, 2659‒2682.
30. Kiełczykowska M., Musik I. Lithium and the application of its compounds in different fields of medicine. J. Elementol. 2014; 19, 1167–1178.
31. Crichton R., Ward R. J., Hider R. C. (ed.) Metal Chelation in Medicine. Cambridge: Royal Society of Chemistry 2017.
32. Baran E. J. Chelation therapies: A chemical and biochemical perspective. Curr. Med. Chem. 2010; 17, 3658‒3672.
33. Aaseth J., Skaug M. A., Cao Y., Andersen O. Chelation in metal intoxication – principles and paradigms. J. Trace Elem. Med. Biol. 2015; 31, 260‒266.
34. Kim J.-J., Kim Y.-S., Kumar V. Heavy metal toxicity: an update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019; 54, 226‒231.
35. Scott L. E., Orvig C. Medicinal inorganic chemistry approaches to passivation and removal of aberant metal ions in disease. Chem. Rev. 2009; 109, 4885‒4910.
36. Litwin T., Dusek P., Skowrońska M., Członkowska A. Treatment of Wilson’s disease – an update. Expert Opin. Orphan Drugs 2019; 7, 287‒294.
37. Nurchi V. M., Crisponi G., Lachowicz J. I., Medici S., Peana M., Zoroddu M. A. Chemical features of in use and in progress chelators for iron overload. J. Trace Elem. Med. Biol. 2016; 38, 10‒18.
38. Yu Y., Gutierrez E., Kovacevic Z., Saletta F., Obeidy P., Suryo Rahmanto Y., Richardson D. R. Iron chelators for the treatment of cancer. Curr. Med. Chem. 2012; 19, 2689‒2702.
39. Crisponi G., Nurchi V. M., Lachowicz J. I., Crespo-Alonso M., Zoroddu M. A., Peana M. Kill or cure: misuse of chelation therapy for human diseases. Coord. Chem. Rev. 2015; 284, 278‒285.
40. Moreno C. R., Navas-Acien A., Escolar E., Nathan D. M., Newman J., Schmedtje J. F., Diaz D., Lamas G. A., Fonseca V. Potential role of metal chelation to prevent the cardiovascular complications of diabetes. J. Clin. Endocrinol. Metab. 2019; 104, 2931‒2941.
41. Kilpin K. J., Dyson P. J. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem. Sci. 2013; 4, 1410‒1419.
42. Krajnc A., Lang P. A., Panduwawala T. D., Brem J., Schofield C. J. Will morphing boron-based inhibitors beat the β-lactamases? Curr. Opin. Chem. Biol. 2019; 50, 101‒110.
43. Tfouni E., Truzzi D. R., Tavares A., Gomes A. J., Figueiredo L. E., Franco D. W. Biological activity of ruthenium nitrosyl complexes. Nitric Oxide 2012; 26, 38‒53.
44. Friederich J. A., Butterworth J. F. Sodium nitroprusside: twenty years and counting. Anesth. Analg. 1995; 81, 152‒162.
45. Riley D. P. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem. Rev. 1999; 99, 2573‒2588.
46. Salvemini D., Muscoli C., Riley D. P., Cuzzocrea S. Superoxide dismutase mimetics. Pulm. Pharmacol. Ther. 2002; 15, 439‒447.
47. Hasenknopf B. Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front. Biosci. 2005; 10, 275‒287.
48. Rhule J. T., Hill C. L., Judd D. A., Schinazi R. F. Polyoxometalates in medicine. Chem. Rev. 1998; 98, 327‒358.
49. van Rompuy, L. S., Parac-Vogt, T. N. Interactions between polyoxometalates and biological systems: from drug design to artificial enzymes. Curr. Opin. Biotech. 2019; 58, 92‒99.
50. Poole K. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol. 2017; 25, 820‒832.
51. Yazdankhah S., Rudi K., Bernhoft A. Zinc and copper in animal feed – development of resistance and co-resistance in antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis. 2014; 25, 25862.
52. Eisner H., Porzecanski B. Inactivation of penicillin by zinc salts. Science 1946; 103, 629‒630.
53. Elkhatib W., Noreddin A. In vitro antibiofilm efficacies of different antibiotic combinations with zinc sulfate against Pseudomonas aeruginosa recovered from hospitalized patients with urinary tract infection. Antibiotics (Basel) 2014; 3, 64‒84.
Labels
Pharmacy Clinical pharmacologyArticle was published in
Czech and Slovak Pharmacy
2020 Issue 3
Most read in this issue
- Medicinal products with controlled drug release for local therapy of inflammatory bowel diseases from perspective of pharmaceutical technology
- Ingavirin might be a promising agent to combat Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2)
- Metal complexes in medicine and pharmacy – the past and the present III
- A pharmacodynamic study of a new gel containing an extract of Aloe vera and an extract of oak bark for potential treatment of periodontal diseases