#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Physiological aspects of lipoxygenase in plant signaling systems
Part I. Octadecanoid pathway


Authors: Renáta Kollárová;  Marek Obložinský;  Veronika Kováčiková
Authors‘ workplace: Univerzity Komenského v Bratislave, Farmaceutická fakulta, Katedra bunkovej a molekulárnej biológie liečiv
Published in: Čes. slov. Farm., 2013; 62, 59-64
Category: Review Articles

Overview

Lipoxygenases (LOX, linoleate: oxygen oxidoreductases, EC 1.13.11.12) constitute a family of dioxygenases, which contain non-heme, non-sulfide iron. These enzymes occur not only in animals, but in plants as well. They have been detected in coral, moss, fungi and also in some bacteria. LOXs catalyse the regiospecific and stereospecific insertion of molecular oxygen into the molecule of polyunsaturated fatty acid with the cis,cis- -1,4-pentadiene system to yield the corresponding hydroperoxides. This step of dioxygenation leads to a cascade of reactions called the lipoxygenase (octadecanoid) pathway. The products of this pathway (called oxylipins) play an important role as signal molecules in wound healing and defence processes in plants. In animals they are involved in inflammation, asthma and heart diseases.

Keywords:
signal system • lipoxygenase • octadecanoid pathway • oxylipins


Sources

1 Munnik T., Irvine R. F., Musgrave A. Phospholipid signalling in plants. Biochim. Biophys. Acta 1998; 1389, 222–272.

2. De Maria L., Vind J., Oxenboll K. M., Svendsen A., Patkar S. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 2007; 74, 290–300.

3. Heilmann I. Plant Lipid Biochemistry: Phosphoinositide signaling in plants 2010. http://lipidlibrary.aocs.org/plantbio/phosphoinositide/index.htm (28. 1. 2013)

4. Meijer H. J. G., Munnik T. Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 2003; 54, 265–306.

5. Šimočková M., Griač P. Degradácia fosfolipidov: tvorba nového zo starého. Chem. Listy 2009; 103, 704–711.

6. Lee H. Y., Bahn S. C., Shin J. S., Hwang I., Back K., Doelling J. H., Ryu S. B. Multiple forms of secretory phospholipase A2 in plants. Prog. Lipid Res. 2005; 44, 52–67.

7. Murakami M., Kudo I. Secretory phospholipase A2. Biol. Pharm. Bull. 2004; 27, 1158–1164.

8. Wang X. Lipid signaling. Curr. Opin. Plant Biol. 2004; 7, 329–336.

9. Holková I., Bezáková L., Vanko M., Bilka F., Obložinský M. Lipoxygenázy a ich význam v biochemických procesoch v rastlinných organizmoch. Chem. Listy 2009; 103, 487–495.

10. Andreou A., Feussner I. Lipoxygenases – Structure and reaction mechanism. Phytochemistry 2009; 70, 1504–1510.

11. Chehab E. W., Perea J. V., Gopalan B., Theg S., Dehesh K. Oxylipin pathway in rice and Arabidopsis. J. Integr. Plant Biol. 2007; 49, 43–51.

12. Shibata D., Slusarenko A., Casey R., Hildebrand D., Bell E. Lipoxygenases. Plant Mol. Biol. Rep. 1994; 12, 41–42.

13. Brash A. R. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 1999; 274, 23679–23679.

14. Feussner I., Balkenhohl T. J., Porzel A., Kühn H., Wasternack C. Structural elucidation of oxygenated storage lipids in cucumber cotyledons – implication of lipid body lipoxygenase in lipid mobilization during germination. J. Biol. Chem. 1997; 272, 21635–21641.

15. Belkner J., Stender H., Kühn H. The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J. Biol. Chem. 1998; 273, 23225–23232.

16. Pandey S. More (G-proteins) please! Identification of an elaborate network of G‑proteins in soybean. Plant Signal. Behav. 2011; 66, 780–782.

17. Mueller-Roeber B., Pical C. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 2002; 130, 22–46.

18. Evans N. H., McAinsh M. R., Hetherington A. M. Calcium oscillations in higher plants. Curr. Opin. Plant Biol. 2001; 4, 415–420.

19. Schaller A., Stintzi A. Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry 2009; 70, 1532–1538.

20. Andreou A., Brodhun F., Feussner I. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 2009; 48, 148–170.

21. Mosblech A., Feussner I., Heilmann I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Bioch. 2009; 47, 511–517.

22. Gullner G., Künstler A., Király L., Pogány M., Tóbiás I. Up-regulated expression of lipoxygenase and divinyl ether synthase genes in pepper leaves inoculated with Tobamoviruses. Physiol. Mol. Plant Pathol. 2010; 74, 387–393.

23. Feussner I., Wasternack C. The lipoxygenase pathway. Annu. Rev. Plant Biol. 2002; 53, 275–297.

24. Joo Y.-C., Oh D.-K. Lipoxygenases: Potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol. Adv. 2012; 30, 1524–1532.

25. Farmaki T., Sanmartin M., Jimenez P., Paneque M., Sanz C., Vancanneyt G., Leon J., Sanchez-Serrano J. J. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J. Exp. Bot. 2007; 58, 555–568.

26. Eschen-Lippold L., Rothe G., Stumpe M., Gobel C., Feussner I., Rosahl S. Reduction of divinyl ether-containing polyunsaturated fatty acids in transgenic potato plants. Phytochemistry 2007; 68, 797–801.

27. Hamberg M. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 1999; 34, 1131–1142.

28. Göbel C., Feussner I., Hamberg M., Rosahl S. Oxylipin profiling in pathogen-infected potato leaves. Biochim. Biophys. Acta 2002; 1584, 55–64.

29. Blée E. Biosynthesis of phytooxylipins: the Peroxygenase pathway. Fett/Lipid 1998; 100, 121–127.

30. Hanano A., Burcklen M., Flenet M., Ivancich A., Louwagie M., Garin J., Blée E. Plant seed peroxygenase is an original heme-oxygenase with EF-hand calcium binding motif. J. Biol. Chem. 2006; 281, 33140–33151.

31. Kühn H., Wiesner R., Rathmann J., Schewe T. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1. Eicosanoids 1991; 4, 9–14.

32. Laudert D., Weiler E. W. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J. 1998; 197, 156–162.

33. Sivasankar S., Sheldrick B., Rothstein S. J. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol. 2000; 122, 1335–1342.

34. Vancanneyt G., Sanz C., Farmaki T., Paneque M., Ortego F., Castanera P., Sanchez-Serrano J. J. Hydroperoxid lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. USA. 2001; 98, 8139–8144.

35. Matsui K., Wilkinson J., Hiatt B., Knauf V., Kajiwara T. Molecular cloning and expression of Arabidopsis fatty acid hydroperoxide lyase. Plant Cell Physiol. 1999; 40, 477–481.

36. Leon J., Rojo E., Sanchez-Serrano J. J. Wound signalling in plants. J. Exp. Bot. 2001; 52, 1–9.

37. Xie D. X., Feys B. F., James S., Nietorostro M., Turner J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 1998; 280, 1091–1094.

38. Zhao J., Davis L. C., Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005; 23, 283–333.

Labels
Pharmacy Clinical pharmacology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#