#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Visual Neuroprosthesis – Stimulation of Visual Cortical Centers in The Brain. Design of Non-Invasive Transcranial Stimulation of Functional Neurons


Authors: Ján Lešták
Authors‘ workplace: České vysoké učení technické v Praze, Fakulta biomedicínského inženýrství, Kladno
Published in: Čes. a slov. Oftal., 80, 2024, No. 3, p. 132-137
Category: Original Article
doi: https://doi.org/10.31348/2024/2

Overview

Purpose: The purpose of the article is to present the history and current status of visual cortical neuroprostheses, and to present a new method of stimulating intact visual cortex cells.

Methods: This paper contains an overview of the history and current status of visual cortex stimulation in severe visual impairment, but also highlights its shortcomings. These include mainly the stimulation of currently damaged cortical cells over a small area and, from a morphological point of view, possible damage to the stimulated neurons by the electrodes and their encapsulation by gliotic tissue.

Results: The paper also presents a proposal for a new technology of image processing and its transformation into a form of non-invasive transcranial stimulation of undamaged parts of the brain, which is protected by a national and international patent.

Conclusion: The paper presents a comprehensive review of the current options for compensating for lost vision at the level of the cerebral cortex and a proposal for a new non-invasive method of stimulating the functional neurons of the visual cortex.

Keywords:

Transcranial stimulation – visual neuroprosthesis – cortical visual centers


Sources

  1.   Lešták J. Neurotransmission in Visual Analyzer and Bionic Eye. A Review. Cesk Slov Oftalmol. 2021;77:55-59.

  2.   Lestak J, Chod J, Rosina J, Hana K. Visual neuroprosthesis: present and future perspectives. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2022;166:251-257.

  3.   Foerster O. Contributions to the pathophysiology of the visual pathway and visual sphere. J Psychol Neurol. 1929;39:435-463.

  4.   Krause F, Schum H. Neue deutsche Chirurgie. Stuttgart, Germany: Enke.1931

  5.   Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196:479-493.

  6.   Dobelle WH, Mladejovsky MG. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol. 1974;243:553-557.

  7.   Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 1996;119:507-522.

  8.   Lewis PM, Rosenfeld JV. 2016. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res. 2016;1630:208-212.

  9.   Khodagholy D, Gelinas JN, Thesen T, et al. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18:310-315.

10.   Rousche PJ, and Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods. 1998;82:1-15.

11.   Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 2000;46:3-9.

12.   Fernández E, Alfaro A, Soto-Sánchez C, et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J Clin Invest. 2021;131(23):e151331. doi: 10.1172/JCI151331

13.   Piedade M, Gerald J, Sousa LA, Tavares G, Tomas P. Visual neuroprosthesis: a non invasive system for stimulating the cortex. IEEE Transactions on Circuits and Systems I: Regular Papers. 2005;52:2648-2662.

14.   Pouratian N. The visual cortical prosthesis system provided some functional vision to blind patients in a 12-month assessment of the device. Ophthalmology Times 2020;23, Available from: https://www. ophthalmologytimes.com/retina/prosthesis-system-may-help-blind-patients-see-again). [cited 2022 Apr]

15.   Beauchamp MS, Oswalt D, Sun P, et al. D. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans. Cell. 2020;181:774-783.

16.   Fernandez E, Alfaro A, and Gonzalez-Lopez P. Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects. Front Neurosci. 2020;14:681. https://doi.org/10.3389/fnins.2020.00681

17.   Strong SL, Silson EH, Gouws AD, Morland AB, McKeefry DJ. A Direct Demonstration of Functional Differences between Subdivisions of Human V5/MT. Cereb Cortex. 2017;27:1-10.

18.   Sanada TM, Namima T, Komatsu H. Comparison of the color selectivity of macaque V4 neurons in different color spaces. J Neurophysiol. 2016;116:2163-2172.

19.   Conway BR. The Organization and Operation of Inferior Tempora l Cortex. Annu Rev Vis Sci. 2018;15:381-402.

20.   Gaglianese A, Costagli M, Bernardi G, RicciardiE., Pietrini P. Evidence of a direct influence between the thalamus and h.MT+ independent of V1 in the human brain as measured by fMRI. Neuroimage. 2012;60:1440-1447.

21.   Ajina S, Bridge H. Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia. 2019;128:140-149.

22.   Pezaris JS, Eskandar E. Getting signals into the brain: Visual prosthetics through thalamic microstimulation. Neurosurg Focus. 2009;27(1): E6.

23.   Chen SC, Suaning GJ, Morley JW, et al. Simulating prosthetic vision: II. Measuring functional capacity. Vision Res. 2009;49:2329-2343.

24.   Liu X, Chen P, Ding X, et al. A narrative review of cortical visual prosthesis systems: the latest progress and significance of nanotechnology for the future. Ann Transl Med. 2022 Jun;10(12):716. doi: 10.21037/atm-22-2858.

25.   Bosking WH, Oswalt DN, Foster BL, Sun P, Beauchamp MS, Yoshor D. Percepts evoked by multi-electrode stimulation of human visual cortex. Brain Stimul. 2022;15:1163-1177.

26.   de Ruyter van Steveninck J, Güçlü U, van Wezel R, van Gerven M. End-to-end optimization of prosthetic vision. J Vis. 2022;22:20. doi: 10.1167/jov.22.2.20

27.   Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322-329.

28.   Lee W, Kim HC, Jung Y, et al. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6:34026. doi: 10.1038/srep34026

28.   Lu G, Qian X, Castillo J, et al. Transcranial Focused Ultrasound for Noninvasive Neuromodulation of the Visual Cortex. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:21-28.

30.   Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383-393.

31.   Williams JA, Imamura M, Fregni,F. Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med. 2009;41:305-311.

32.   Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by Activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract. 2018;12:1-9.

33.   Cicmil N, Krug K. Playing the electric light orchestra-how electrical stimulation of visual cortex elucidates the neural basis of perception. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140206.

34.   Cohen MR, Newsome WT. What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol. 2004;14:169-177.

35.   Histed MH, Ni AM, Maunsell JH. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog. Neurobiol. 2013;103:115-130.

36.   Lešták J, Tintěra J, Kynčl M, Svatá Z, Obenberger J, Saifrtová A. Changes in the Visual Cortex in Patients with High-Tension Glaucoma. J Clinic Exp Ophthalmol. 2011; S4 doi: 10.4172/2155-9570.S4-002

37.   Saifrtová A, Lešták J, Tintěra J, et al. Colour vision defect in patients with high-tension glaucoma. J Clin Exp Ophthalmol. 2012;3:9 http://dx.doi.org/10.4172/2155-9570.1000252

38.   Lestak J, Tintera J, Karel I, Svata Z, Rozsival P. FMRI in Patients with Wet Form of Age-Related Macular Degeneration. Neuro-Ophthalmology. 2013;37:192-197.

39.   Lešták J, Tintěra J. Funkční magnetická rezonance u vybraných očních onemocnění [Functional Magnetic Resonance Imaging in Selected Eye Diseases]. Cesk Slov Oftalmol. 2015;71:127-133. Czech.

40.   Lestak J, Kyncl M, Tintera J. Bionic Eye and Retinitis Pigmentosa. Biomed J Sci & Tech Res. 2019;19:14347-14348.

41.   Lestak J, Fus M. Neuroprotection in glaucoma – a review of electrophysiologist. Exp Ther Med. 2020;19:2401-2405.

42.   Luan S, Williams I, Nikolic K, Constandinou TG. Neuromodulation: present and emerging methods. Front Neuroeng 2014;7:27. doi: 10.3389/fneng.2014.00027

43.   Vrba J. Lékařské aplikace mikrovlnné techniky. Vyd. 1. V Praze: Nakladatelství ČVUT, 2007, dotisk. 168 s. ISBN 978-80-01-02705-9 ú.

44.   Boonzaier J, van Tilborg GAF, Neggers SFW, Dijkhuizen RM. Noninvasive Brain Stimulation to Enhance Functional Recovery After Stroke: Studies in Animal Models. Neurorehabil Neural Repair 2018;32:927-940. doi: 10.1177/1545968318804425

45.   Zheng KY, Da GY, Lan Y, Wang XQ. Trends of Repetitive Transcranial Magnetic Stimulation From 2009 to 2018: A Bibliometric Analysis. Front Neurosci 2020;14:106. doi: 10.3389/fnins.202

46.       Ortiz-Rios M, Agayby B, Balezeau F, et al. Optogenetic stimulation of primate V1 reveals local laminar and large-scale cortical networks related to perceptual phosphenes. bioRxiv. 2021. doi:10.1101/2021.06.01.446505

Labels
Ophthalmology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#