#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

RHEOPHERESIS IN THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION


Authors: H. Langrová 1;  E. Rencová 1;  M. Bláha 2;  J. Studnička 1;  panov. A. Stě 1;  J. Breznayová 1;  M. Burova 1;  Š. Jedličková 1;  H. Dvořáková 1;  V. Bláha 3;  M. Lánská 2
Authors‘ workplace: Univerzita Karlova, Lékařská fakulta Hradec Králové, Oční klinika 1;  Univerzita Karlova, Lékařská fakulta Hradec Králové, IV. Interní, hematologická klinika 2;  Univerzita Karlova, Lékařská fakulta Hradec Králové, III. Interní, gerontometabolická klinika 3
Published in: Čes. a slov. Oftal., 79, 2023, No. 1, p. 8-24
Category: Original Article
doi: https://doi.org/10.31348/2023/2

Overview

Purpose: Evaluation of the long-term effect of rheopheresis treatment of dry form of age-related macular degeneration (AMD).

Materials and Methods: The treatment group consisted of 65 patients and 55 patients in the control group, with a minimum follow-up period of 60 months. The basic treatment consisted of 8 rheopheresis procedures, and the additional treatment (booster therapy) of 2 rheopheresis procedures 1.5–2 years after the basic treatment. We evaluated changes in best corrected visual acuity, anatomical effect, electrical activity of the retina, haematological, biochemical and immunological parameters.

Results: Rheopheresis treatment contributed significantly: 1) to stabilisation of best corrected visual acuity of the treated patients, which initially showed an insignificant increased during the 2-years follow-up period, and then slightly decreased. By contrast, visual acuity decreased in the control group, to an insignificant degree up to 4 years, then statistically significantly. 2) to an improvement of the morphological findings in 62.4% of treated patients compared to 7.5% in the control group, while disease progression to stage 3 (neovascular form of the disease or geographic atrophy) with a significant decrease of visual acuity occurred in only 7.1% of treated patients, versus 37.0% in the control group. 3) to regression, even to the attachment of drusenoid pigment epithelial detachment (DPED). To a reduction of the area of DPED in 80.4% of treated patients, in contrast with an steaincrease in the area of DPED in 47.1% of patients in the control group, and the development of new DPED in only 2 eyes of treated patients compared with 16 eyes of patients in the control group. 4) to a preservation of the integrity of the ellipsoid layer in the fovea in 68.2% of the treated patients, while by contrast we found a damaged ellipsoid layer in the fovea in 66.6% of the control patients. 5) to a stabilisation of the activity of ganglion cells, the pineal system and the activity of the central area of the retina, with eccentricity between 1.8° and 30° in the treated patients, compared to alteration in the control group manifested mainly after 3.5 years of the follow-up period. 6) to a statistically significant improvement in rheological parameters, thereby increasing flow in microcirculation and positively influencing the metabolism in the retina. Also to a positive effect on the classical, alternative and lectin pathway of complement activation, a reduction in the level of proprotein convertase subtilisin kexin 9 (PCSK9), and thus also the level of LDLcholesterol, and 7) Additional treatment with 2 RHF procedures (so-called "booster therapy") seems to be a safe and suitable method of prolonging the stabilisation phase, or even improving visual acuity, anatomical and functional findings.

Conclusion: We demonstrated positive changes in anatomical, functional and humoral parameters upon rheopheresis treatment of AMD. Their correlation provides a real possibility to identify patients at risk and to manage an individualised regime of rheopheresis therapy. This method of treatment is effective and safe, with a low percentage of non-serious adverse effects.

Keywords:

rheopheresis – dry form of AMD – DPED – ellipsoid layer of photoreceptors – ERG


Sources

1. Seddon JM, Chen CA. The epidemiology of age-related macular degeneration. Int Ophthalmol Clin Fall. 2004;44(4):17-39.

2. Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57-65.e55.

3. Donaldson MJ, Pulido JS. Treatment of nonexudative (dry) age-related macular degeneration. Curr Opin Ophthalmol. 2006;17(3):267- 274.

4. Rencová E, Bláha M, Blažek M, et al. Možnost ovlivnění suché formy věkem podmíněné makulární degenerace hemorheoferézou [Influence of haemorheopheresis in the dry form of the age related macular degeneration]. Cesk Slov Oftalmol. 2009;65(2):43-48. Czech.

5. Klein R. Overview of progress in the epidemiology of age-related macular degeneration. Ophthalmic Epidemiol. 2007;14(4):184-187.

6. Rencová E, Bláha M, Langrová H, et al. Haemorheopheresis could block the progression of the dry form of age-related macular degeneration with soft drusen to the neovascular form. Acta Ophthalmol. 2011;89(5):463-471.

7. Rencová E, Bláha M, Langrová H, et al. Preservation of the Photoreceptor Inner/Outer Segment Junction in Dry Age-Related Macular Degeneration Treated by Rheohemapheresis. J Ophthalmol. 2015;2015:359747.

8. Troutbeck RS, Al-qureshi RS, GUYME RH. Therapeutic targeting of the complement system in age-related macular degeneration: a review. Clin Experiment Ophthalmol. 2012;40(1)18-26.

9. Wang X, Zhang Y, Zhang MN. Complement factor B polymorphism (rs641153) and susceptibility to age-related macular degeneration: evidence from published studies. Int J Ophthalmol. 2013;6(6):861- 867.

10. Bláha M, Andrýs C, Langrová H, et al. Changes of the complement system and rheological indicators after therapy with rheohemapheresis. Atheroscler Suppl. 2015;18:140-145.

11. Friedman E. The pathogenesis of age-related macular degeneration. Am J Ophthalmol. 2008;146(3):348-349.

12. De Amorim Garcia Filho CA, Yehoshua Z, Gregori G, et al. Change in drusen volume as a novel clinical trial endpoint for the study of complement inhibition in age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina. 2014;45(1):18-31.

13. Tamai KA, Matsubara K, Tomida A, et al. Lipid hydroperoxide stimulates leukocyte-endothelium interaction in the retinal microcirculation. Exp Eye Res. 2002;75(1):69-75.

14. Tserentsoodol Na, Sztein J, Campos N, et al. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor- mediated process. Mol Vis. 2006;12:1306-1318.

15. Fliesler SJ, Florman R, RapP LM, et al. In vivo biosynthesis of cholesterol in the rat retina. FEBS Lett. 1993;335(2):234-238.

16. Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865-48875.

17. Age-related eye disease study research group: A randomized, placebo- controlled, clinical trial of high-dose supplementation with vitamins C and E, beta karotene and zinc for age-related macular degeneration and vision loss. AREDS Report 8. Arch Ophthalmol. 2001;119:1417-1436.

18. Klingel R, Fassbender C, Heibges A, et al. RheoNet registry analysis of rheopheresis for microcirculatory disorders with a focus on age-related macular degeneration. Ther Apher Dial. 2010;14(3):276-286.

19. Rencová E, Bláha M, Langrová H, et al. Reduction in the drusenoid retinal pigment epithelium detachment area in the dry form of age-related macular degeneration 2.5 years after rheohemapheresis. Acta Ophthalmol. 2013;91(5):e406-408.

20. Schwartz J, Winters JL, Padmanabhan A, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013;28(3):145-284.

21. Studnicka J, Rencova E, Blaha M, et al. Long-term outcomes of rheohaemapheresis in the treatment of dry form of age-related macular degeneration. J Ophthalmol. 2013; 135798.

22. Rozsíval P, Baráková D, Bláha M, et al. Trendy soudobé oftalmologie 7. Edition ed. Praha: Galén. 2011. 225 p. ISBN 978-80-7262-691-5.

23. Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J Clin Apher. 2016;31(3):149-162.

24. Klingel R, Fassbender C, Fassbender, et al. Rheopheresis: rheologic, functional, and structural aspects. Ther Apher. 2000;4(5):348-357.

25. Klingel R, Fassbender C, Fassbender T, Gohlen B. Clinical studies to implement Rheopheresis for age-related macular degeneration guided by evidence-based-medicine. Transfus Apher Sci. 2003;29(1):71-84.

26. Berrouschot J, Barthel H, Scheel C, et al. Extracorporeal membrane differential filtration--a new and safe method to optimize hemorheology in acute ischemic stroke. Acta Neurol Scand. 1998;97(2):126-130.

27. Brunner R Widder RA, Walter P, et al. Change in hemorrheological and biochemical parameters following membrane differential filtration. Int J Artif Organs. 1995;18(12):794-798.

28. Borberg H, Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus Apher Sci. 2006;34(1):41-49.

29. Bláha, M. Extracorporeal LDL-cholesterol elimination in the treatment of severe familial hypercholesterolemia. Acta Medica (Hradec Králové). 2003;46(1):3-7.

30. Bláha, M, Cermanová M, Bláha V, et al. Safety and tolerability of long lasting LDL-apheresis in familial hyperlipoproteinemia. Ther Apher Dial. 2007;11(1):9-15.

31. Bláha M, Rencová E, Bláha V, et al. Rheopheresis in vascular diseases. Int J Artif Organs. 2008;31(5):456-457.

32. Lánská M, Bláha M, Žák P. Extrakorporální eliminace cholesterolu u familiární hypercholesterolemie – srovnání dvou metod. Transfúze a hematologie dnes. 2014;20:67-75.

33. Stegmayr B, Pták J, Wikstrom B, et al. World apheresis registry 2003-2007 data. Transfus Apher Sci. 2008;39(3):247-254.

34. Bláha M, Lánská M, Tomšová H, Žák P. Apheresis data registration in WWA registry-10-year experience of our center. Transfus Apher Sci. 2017;56(5):738-741.

35. Bláha M, Pták J, Čáp J, et al. WAA apheresis registry in the Czech Republic: two centers experience. Transfus Apher Sci. 2009;41(1):27- 31.

36. Witt VB, Stegmayr J, Ptak J, et al. World apheresis registry data from 2003 to 2007, the pediatric and adolescent side of the registry. Transfus Apher Sci. 2008;39(3):255-260.

37. Mortzell M, Berlin G, Nilsson T, et al. Analyses of data of patients with Thrombotic Microangiopathy in the WAA registry. Transfus Apher Sci. 2011;45(2):125-131.

38. Stegmayr B, Pták J, Nilsson T, et al. Panorama of adverse events during cytapheresis. Transfus Apher Sci. 2013;48(2):155-156.

39. Kojima S, Yoshitomi Y, Sotaome M, et al. Effects of losartan on low- -density lipoprotein apheresis. Ther Apher.1999;3(4):303-306.

40. Kojima S, Shida M, Takano H, et al. Effects of losartan on blood pressure and humoral factors in a patient who suffered from anaphylactoid reactions when treated with ACE inhibitors during LDL apheresis. Hypertens Res. 2001;24(5):595-598.

41. Winters JL. Low-density lipoprotein apheresis: principles and indications. Semin Dial. 2012;25(2):145-151.

42. Pulido J. Multicenter Investigation of Rheopheresis for AMD (MIRA-1) study Group, Multicenter prospective, randomised, double-masced, placebo-controlled study of rheopheresis to treat nonexudative age-related macular degeneration: interim analysis, Trans. Am. Ophthalmol. Soc. 2002;100:85-107.

43. Pulido JS, Winter JL, Boyer D. Preliminary analysis of the final multicenter investigation of rheopheresis for age related macular degeneration (AMD) trial (MIRAl) results, Trans Am Ophthalmol Soc. 2006;104:221-231.

44. Bláha M, Rencová E, Langrová H, et al. Rheohaemapheresis in the treatment of nonvascular age-related macular degeneration. Atheroscler Suppl. 2013;14(1):179-184.

45. Sikorski BL, Bukowska L, Kaluzny JJ, et al. Drusen with accompanying fluid underneath the sensory retina. Ophthalmology. 2011;118:82-92.

46. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration, Ophthalmology. 2008;115:1883-1890.

47. Bláha M, Krejsek J, Bláha M, et al. Selectins and monocyte chemotactic peptide as the markers of atherosclerosis activity, Physiol Res. 2004;53(3):273-278.

48. Michelson AD, Barnard MR, Hechtman HB, et al. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and fiction. Proc Natl Acad Sci USA. 1996;93(21):11877-11882.

49. Julius U, Milton M, Stoellner D, et al. Effects of lipoprotein apheresis on PCSK9 levels. Atherosclerosis Supplements. 2015;18:180-6.

50. Bláha M, Skořepová M, Mašín V, et al. The role of erythrocytapheresis in secondary erythrocytosis therapy. Clin Hemorheol Microcirc. 2002;26(4):273-275.

Labels
Ophthalmology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#