Standardization of MRI in Multiple Sclerosis Management Consensus by the Czech Expert Radiology-Neurology Panel
Authors:
M. Vaněčková 1; D. Horáková 2; D. Šťastná 2; R. Tupý 3; M. Keřkovský 4; P. Ryška 5; M. Holešta 6; M. Peterka 7,8; P. Hradílek 9; J. Palíšek 10; J. Prokešová 11; M. Vachová 2,12; J. Mareš 13
Authors‘ workplace:
Oddělení MR, Radiodiagnostická klinika 1. LF UK a VFN v Praze
1; Neurologická klinika a Centrum klinických neurověd 1. LF UK a VFN v Praze
2; Klinika zobrazovacích metod LF UK a FN Plzeň
3; Klinika radiologie a nukleární medicíny LF MU a FN Brno
4; Radiologická klinika LF UK a FN Hradec Králové
5; Klinika radiologie a nukleární medicíny 3. LF UK a FNKV, Praha
6; Neurologická klinika LF UK a FN Plzeň
7; Neurologická klinika LF UK a FN Hradec Králové
8; Neurologická klinika LF OU a FN Ostrava
9; Oddělení zobrazovacích metod, KNTB Zlín
10; Radiodiagnostické oddělení, KZ – Nemocnice Teplice
11; Neurologické oddělení, KZ – Nemocnice Teplice
12; Neurologická klinika LF UP a FN Olomouc
13
Published in:
Cesk Slov Neurol N 2024; 87(1): 69-78
Category:
doi:
https://doi.org/10.48095/cccsnn202469
Overview
In MS, MRI has an irreplaceable role. The unification of MRI management across different institutions is crucial for maximal use of the potential of this method, i.e., for early and accurate diagnosis with the determination of prognostic markers, early signal of ineffectiveness of therapy or safety problem, but also for availability of adequate care for all patients. At the same time, communication between the radiologist and neurologist and the associated standardization of both the referral form and MRI description are essential. In addition to improving the quality of care for the individual patient, a uniform MRI data format would also lead to the possibility of national data collection. This would allow for structured information for research as well as the use of MRI data in negotiations with healthcare providers. For this purpose under the patronage of the Section of Clinical Neuroimmunology and Liquorology of the Czech Neurological Society, this consensus of the Czech Expert Radiology-Neurology Panel is published based on the international Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) recommendations. It proposes recommendations for a basic and extended diagnostic, monitoring and safety MRI protocol, specifies the frequency of individual examinations, the necessary information on the MRI referral form and presents a standardized description of diagnostic and monitoring MRI in patients with suspected or confirmed diagnosis of MS.
Keywords:
diagnostic criteria – Safety – Multiple sclerosis – magnetic resonance imaging – monitoring protocol – recommendations – prognostic markers – diagnostic protocol – referral form – standardized description
Sources
1. Thompson AJ, Banwell BL, Barkhof F et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17 (2): 162–173. doi: 10.1016/S1474-4422 (17) 30470-2.
2. He A, Merkel B, Brown JWL et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol 2020; 19 (4): 307–316. doi: 10.1016/S1474-4422 (20) 30067-3.
3. Prosperini L, Mancinelli CR, Solaro CM et al. Induction versus escalation in multiple sclerosis: a 10-year real world study. Neurotherapeutics 2020; 17 (3): 994–1004. doi: 10.1007/S13311-020-00847-0.
4. Harding K, Williams O, Willis M et al. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol 2019; 76 (5): 536–541. doi: 10.1001/JAMANEUROL.2018.4905.
5. Uher T, Krasensky J, Malpas C et al. Evolution of brain volume loss rates in early stages of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (3): e979. doi: 10.1212/NXI.0000000000000979.
6. Brown JWL, Coles A, Horakova D et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 2019; 321 (2): 175–187. doi: 10.1001/JAMA.2018.20588.
7. Hrnciarova T, Drahota J, Spelman T et al. Does initial high efficacy therapy in multiple sclerosis surpass escalation treatment strategy? A comparison of patients with relapsing-remitting multiple sclerosis in the Czech and Swedish national multiple sclerosis registries. Mult Scler Relat Disord 2023; 76: 104803. doi: 10.1016/J.MSARD.2023.104803.
8. Spelman T, Magyari M, Piehl F et al. Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing-remitting multiple sclerosis: data from 2 different national strategies. JAMA Neurol 2021; 78 (10): 1197–1204. doi: 10.1001/JAMANEUROL.2021.2738.
9. Šťastná D, Seňavová J, Andělová M et al. Internal comorbidities and complications of multiple sclerosis therapy – don’t be caught off guard! Vnitr Lek 2023; 69 (5): 294–298. doi: 10.36290/vnl.2023.058.
10. Cortese R, Giorgio A, Severa G et al. MRI prognostic factors in multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte antibody disease. Front Neurol 2021; 12: 679881. doi: 10.3389/FNEUR.2021.679881.
11. Tintore M, Rovira À, Río J et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015; 138 (Pt 7): 1863–1874. doi: 10.1093/BRAIN/AWV105.
12. Fisniku LK, Brex PA, Altmann DR et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008; 131 (3): 808–817. doi: 10.1093/BRAIN/AWM329.
13. Tintore M, Rovira A, Arrambide G et al. Brainstem lesions in clinically isolated syndromes. Neurology 2010; 75 (21): 1933–1938. doi: 10.1212/WNL.0B013E3181FEB26F.
14. Preziosa P, Rocca MA, Mesaros S et al. Relationship between damage to the cerebellar peduncles and clinical disability in multiple sclerosis. Radiology 2014; 271 (3): 822–830. doi: 10.1148/RADIOL.13132142.
15. Brownlee WJ, Hardy TA, Fazekas F et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389 (10076): 1336–1346. doi: 10.1016/S01 40-6736 (16) 30959-X.
16. Swanton JK, Fernando KT, Dalton CM et al. Early MRI in optic neuritis: the risk for disability. Neurology 2009; 72 (6): 542–550. doi: 10.1212/01.WNL.0000341935.41852.82.
17. Rush CA, Maclean HJ, Freedman MS. Aggressive multiple sclerosis: proposed definition and treatment algorithm. Nat Rev Neurol 2015; 11 (7): 379–389. doi: 10.1038/NRNEUROL.2015.85.
18. Calabrese M, Poretto V, Favaretto A et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 2012; 135 (Pt 10): 2952–2961. doi: 10.1093/BRAIN/AWS246.
19. Kubala Havrdová E, Piťha J. Klinický doporučený postup pro diagnostiku a léčbu roztroušené sklerózy a neuromyelitis optica a onemocnění jejího širšího spektra. [online]. Dostupné z: https: //www.czech-neuro.cz/content/uploads/2020/04/rs_odborna-2.0_final_pub_web-2.pdf.
20. Uher T, Havrdova E, Sobisek L et al. Is no evidence of disease activity an achievable goal in MS patients on intramuscular interferon beta-1a treatment over long-term follow-up? Mult Scler 2017; 23 (2): 242–252. doi: 10.1177/1352458516650525.
21. Montalban X, Gold R, Thompson AJ et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler 2018; 24 (2): 96–120. doi: 10.1177/1352458517751049.
22. Tsantes E, Curti E, Collura F et al. Five- and seven-year prognostic value of new effectiveness measures (NEDA, MEDA and six-month delayed NEDA) in relapsing-remitting multiple sclerosis. J Neurol Sci 2020; 414: 116827. doi: 10.1016/J.JNS.2020.116827.
23. Tur C, Carbonell-Mirabent P, Cobo-Calvo Á et al. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol 2023; 80 (2): 151–160. doi: 10.1001/JAMANEUROL.2022.4655.
24. Šťastná D, Menkyová I, Horáková D. Progresivní roztroušená skleróza ve světle nejnovějších poznatků. Cesk Slov Neurol N 2023; 86/119 (1): 10–17. doi: 10.48095/cccsnn202310.
25. Giovannoni G, Popescu V, Wuerfel J et al. Smouldering multiple sclerosis: the „real MS“. Ther Adv Neurol Disord 2022; 15: 17562864211066751. doi: 10.1177/1756286 4211066751.
26. Macaron G, Ontaneda D. Diagnosis and management of progressive multiple sclerosis. Biomedicines 2019; 7 (3): 56. doi: 10.3390/BIOMEDICINES7030056.
27. Elliott C, Rudko DA, Arnold DL et al. Lesion-level correspondence and longitudinal properties of paramagnetic rim and slowly expanding lesions in multiple sclerosis. Mult Scler 2023; 29 (6): 680–690. doi: 10.1177/13524585231162262.
28. Contentti EC, Correale J. Current perspectives: evidence to date on BTK inhibitors in the management of multiple sclerosis. Drug Des Devel Ther 2022; 16: 3473–3490. doi: 10.2147/DDDT.S348129.
29. Kaul M, End P, Cabanski M et al. Remibrutinib (LOU064): a selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin Transl Sci 2021; 14 (5): 1756–1768. doi: 10.1111/CTS.13005.
30. Dolgin E. BTK blockers make headway in multiple sclerosis. Nat Biotechnol 2021; 39 (1): 3–5. doi: 10.1038/S41587-020-00790-7.
31. Bhargava P, Kim S, Reyes AA et al. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 2021; 144 (5): 1396–1408. doi: 10.1093/BRAIN/AWAB045.
32. Krämer J, Bar-Or A, Turner TJ et al. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19 (5): 289–304. doi: 10.1038/S41582-023-00800-7.
33. Montalban X, Arnold DL, Weber MS et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019; 380 (25): 2406–2417. doi: 10.1056/NEJMoa1901981.
34. Reich DS, Arnold DL, Vermersch P et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2021; 20 (9): 729–738. doi: 10.1016/S1474-4422 (21) 00237-4.
35. Pandit L. No evidence of disease activity (NEDA) in multiple sclerosis – shifting the goal posts. Ann Indian Acad Neurol 2019; 22 (3): 261–263. doi: 10.4103/AIAN.AIAN_159_19.
36. Stastna D, Drahota J, Lauer M et al. The Czech Na- tional MS Registry (ReMuS): data trends in multiple sclerosis patients whose first disease-modifying therapies were initiated from 2013 to 2021. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023. doi: 10.5507/BP.2023.015.
37. Wattjes MP, Ciccarelli O, Reich DS et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20 (8): 653–670. doi: 10.1016/S1474-4422 (21) 00095-8.
38. Vaněčková M, Adámek D, Horáková D. Vyšetřo-vací MR protokoly pro diagnostiku a monitoraci aktivity u onemocnění roztroušené sklerózy. Neurol Praxi 2022; 23 (Suppl CH): 3–14.
39. Vaněčková M, Horáková D. Současná doporučení pro využití MR u onemocnění roztroušené sklerózy v klinické praxi. Neurol Praxi 2023; 24 (4): 300–308.
40. Eisele P, Szabo K, Griebe M et al. Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 2012; 33 (7): 1369–1373. doi: 10.3174/AJNR.A2975.
41. Maggi P, Absinta M, Grammatico M et al. Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 2018; 83 (2): 283–294. doi: 10.1002/ANA.25146.
42. Clarke MA, Samaraweera APR, Falah Y et al. Single Test to ARrive at Multiple Sclerosis (STAR-MS) diagnosis: a prospective pilot study assessing the accuracy of the central vein sign in predicting multiple sclerosis in cases of diagnostic uncertainty. Mult Scler 2020; 26 (4): 433–441. doi: 10.1177/1352458519 882282.
43. Sinnecker T, Clarke MA, Meier D et al. Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol 2019; 76 (12): 1446–1456. doi: 10.1001/JAMANEUROL.2019.2478.
44. Mistry N, Dixon J, Tallantyre E et al. Central veins in brain lesions visualized with high-field magnetic resonance imaging: a pathologically specific diagnostic biomarker for inflammatory demyelination in the brain. JAMA Neurol 2013; 70 (5): 623–628. doi: 10.1001/JAMANEUROL.2013.1405.
45. Maggi P, Sati P, Nair G et al. Paramagnetic rim lesions are specific to multiple sclerosis: an international multicenter 3T MRI study. Ann Neurol 2020; 88 (5): 1034–1042. doi: 10.1002/ANA.25877.
46. Harrison DM, Li X, Liu H et al. Lesion heterogeneity on high-field susceptibility MRI is associated with multiple sclerosis severity. AJNR Am J Neuroradiol 2016; 37 (8): 1447. doi: 10.3174/AJNR.A4726.
47. Absinta M, Sati P, Masuzzo F et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 2019; 76 (12): 1474–1483. doi: 10.1001/JAMANEUROL.2019.2399.
48. Absinta M, Sati P, Schindler M et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 2016; 126 (7): 2597–2609. doi: 10.1172/JCI86198.
49. Suthiphosuwan S, Sati P, Guenette M et al. The central vein sign in radiologically isolated syndrome. AJNR Am J Neuroradiol 2019; 40 (5): 776–783. doi: 10.3174/AJNR.A6045.
50. Tomassini V, Sinclair A, Sawlani V et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol 2020; 267 (10): 2917–2925. doi: 10.1007/S00415-020-09930-0.
51. European Society of Urogenital Radiology. ESUR guidelines on contrast agents. [online]. Dostupné z: https: //www.esur.org/esur-guidelines-on-contrast-agents/.
52. Alessandrino F, Pichiecchio A, Mallucci G et al. Do MRI structured reports for multiple sclerosis contain adequate information for clinical decision making? AJR Am J Roentgenol 2018; 210 (1): 24–29. doi: 10.2214/AJR.17.18451.
53. Lee JK, Bermel R, Bullen J et al. Structured reporting in multiple sclerosis reduces interpretation time. Acad Radiol 2021; 28 (12): 1733–1738. doi: 10.1016/ J.ACRA.2020.08.006.
54. Eichinger P, Schön S, Pongratz V et al. Accuracy of unenhanced MRI in the detection of new brain lesions in multiple sclerosis. Radiology 2019; 291 (2): 429–435. doi: 10.1148/radiol.2019181568.
55. Vaněčková M, Seidl Z, Krásenský J et al. Naše zkušenosti s MR monitorací pacientů s roztroušenou sklerózou v klinické praxi. Cesk Slov Neurol N 2010; 73/106 (6): 716–720.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2024 Issue 1
Most read in this issue
- Diffuse glioma overview based on the 2021 WHO classifi cation part 2 – pediatric type
- Tonsilla cerebelli – anatomy, function and its significance for neurosurgery
- Standardization of MRI in Multiple Sclerosis Management Consensus by the Czech Expert Radiology-Neurology Panel
- Use of artificial intelligence in CT image evaluation in stroke patients – current options