#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diagnosis of root avulsion in brachial plexus injury before surgery


Authors: Š. Brušáková 1,2;  I. Holečková 2;  J. Lodin 3;  J. Ceé 1;  H. Zítek 3;  V. Skálová 4;  I. Humhej 3
Authors‘ workplace: Neurologické oddělení, Krajská, zdravotní, a. s., Masarykova nemocnice, v Ústí nad Labem, o. z. 1;  Neurochirurgická klinika, LF UK a FN Plzeň 2;  Neurochirurgická klinika Fakulty zdravotnických, studií Univerzity, J. E. Purkyně v Ústí nad Labem, a Krajské zdravotní a. s. – Masarykovy, nemocnice v Ústí nad Labem, o. z. 3;  Radiologická klinika Fakulty zdravotnických, studií Univerzity J. E. Purkyně, v Ústí nad Labem a Krajské zdravotní, a. s. – Masarykovy nemocnice v Ústí, nad Labem, o. z. 4
Published in: Cesk Slov Neurol N 2023; 86(4): 231-238
Category: Review Article
doi: https://doi.org/10.48095/cccsnn2023231

Overview

The complex structure and lesion variety of the brachial plexus, together with the frequent presence of concurrent tissue trauma, necessitates a multidisciplinary dia­gnostic approach including clinical, radiological, and electrophysiological examinations. Neither examination is individually sensitive or specific enough to dia­gnose radicular avulsion. Misinterpretation can result in an incorrect preoperative dia­gnosis of the present lesion. False positive results can lead to unnecessary or wrongly planned surgery; false negative results result in permanent morbidity. Careful clinical examination of the patient forms the cornerstone of a correct dia­gnosis. Preoperative neurophysiological methods evaluate individual portions of the brachial plexus and include electroneurography, needle electromyography and evoked potentials. Radiological examinations analyze the brachial plexus structure and include most often used CT perimyelography, magnetic resonance imaging or their combination. The article summarizes current combinations of dia­gnostic strategies, which increase the sensitivity and specificity of the preoperative dia­gnosis. This allows accurate identification of optimal surgical candidates for early surgery in a timely and efficient manner.

Keywords:

Electrophysiology – magnetic resonance imaging – Regeneration – brachial plexus – avulsion – nerve root – neurotransfer – CT myelography


Sources

1. Van der Looven R, Le Roy L, Tanghe E et al. Risk factors for neonatal brachial plexus palsy: a systematic review and meta-analysis. Dev Med Child Neurol 2020; 62 (6): 673–683. doi: 10.1111/dmcn.14381.

2. O’Berry P, Brown M, Phillips L et al. Obstetrical brachial plexus palsy. Curr Probl Pediatr Adolesc Health Care 2017; 47 (7): 151–155. doi: 10.1016/j.cppeds.2017.06.003.

3. Shah V, Coroneos CJ, Ng E. The evaluation and management of neonatal brachial plexus palsy. Paediatr Child Health 2021; 26 (8): 493–497. doi: 10.1093/pch/ pxab083.

4. Haninec P, Kaiser R. Operační léčba poranění plexus brachialis. Cesk Slov Neurol N 2011; 74/107 (6): 619–630.

5. Russell S. Brachial plexus anatomy. In: Examination of peripheral nerve injuries: an anatomical approach. New York: Thieme 2015: 85–138.

6. Schalow G. Ventral root afferent and dorsal root efferent fibres in dog and human lower sacral nerve roots. Gen Physiol Biophys 1992; 11 (1): 123–131.

7. Guday E, Bekele A, Muche A. Anatomical study of prefixed versus postfixed brachial plexuses in adult human cadaver. ANZ J Surg 2017; 87 (5): 399–403. doi: 10.1111/ans.13534.

8. Pellerin M, Kimball Z, Tubbs RS et al. The prefixed and postfixed brachial plexus: a review with surgical implications. Surg Radiol Anat 2010; 32 (3): 251–260. doi: 10.1007/s00276-009-0619-3.

9. Wade RG, Takwoingi Y, Wormald JCR et al. Magnetic resonance imaging for detecting root avulsions in traumatic adult brachial plexus injuries: protocol for a systematic review of dia­gnostic accuracy. Syst Rev 2018; 7 (1): 76. doi: 10.1186/s13643-018-0737-2.

10. Laohaprasitiporn P, Wongtrakul S, Vathana T et al. Is pseudomeningocele an absolute sign of root avulsion brachial plexus injury? J Hand Surg Asian Pac Vol 2018; 23 (3): 360–363. doi: 10.1142/S2424835518500376.

11. Elsakka TO, Kotb HT, Farahat AA et al. Axial T2-DRIVE MRI myelography is highly accurate in dia­gnosing preganglionic traumatic brachial plexus injuries: why pseudomeningoceles should not be used as a primary dia­gnostic sign. Clin Radiol 2022; 77 (5): 377–383. doi: 10.1016/j.crad.2022.01.052.

12. Bertelli JA, Ghizoni MF. Use of clinical signs and computed tomography myelography findings in detecting and excluding nerve root avulsion in complete brachial plexus palsy. J Neurosurg 2006; 105 (6): 835–842. doi: 10.3171/jns.2006.105.6.835.

13. Wade RG, Takwoingi Y, Wormald JCR et al. MRI for detecting root avulsions in traumatic adult brachial plexus injuries: a systematic review and meta-analysis of dia­g­­- nostic accuracy. Radiology 2019; 293 (1): 125–133. doi: 10.1148/radiol.2019190218.

14. Smith BW, Chang KWC, Parmar HA et al. MRI evaluation of nerve root avulsion in neonatal brachial plexus palsy: understanding the presence of isolated dorsal/ventral rootlet disruption. J Neurosurg Pediatr 2021; 27 (5): 589–593. doi: 10.3171/2020.9.PEDS20326.

15. Humhej I, Ibrahim I, Sameš M et al. Zobrazení periferních nervů pomocí difuzního tenzoru a MR traktografie. Cesk Slov Neurol N 2018; 81/114: 420–426. doi: 10.14735/amcsnn2018csnn.eu3.

16. Sakellariou VI, Badilas NK, Mazis GA et al. Brachial plexus injuries in adults: evaluation and dia­g­nostic approach. ISRN Orthop 2014; 2014: 726103. doi: 10.1155/2014/726103.

17. Ruoff JM, van der Sluijs JA, van Ouwerkerk WJ et al. Musculoskeletal growth in the upper arm in infants after obstetric brachial plexus lesions and its relation with residual muscle function. Dev Med Child Neurol 2012; 54 (11): 1050–1056. doi: 10.1111/j.1469-8749.2012.04383.x.

18. Clifton WE, Stone JJ, Kumar N et al. Delayed myelopathy in patients with traumatic preganglionic brachial plexus avulsion injuries. World Neurosurg 2019; 122: e1562–e1569. doi: 10.1016/j.wneu.2018.11.102.

19. Raksakulkiat R, Leechavengvongs S, Malungpaishrope K et al. Restoration of winged scapula in upper arm type brachial plexus injury: anatomic feasibility. J Med Assoc Thai 2009; 92 (Suppl 6): S244–S250.

20. Kumar A, Leodante D. Dropped head syndrome in brachial plexus injury: a technical note. Neurol India 2017; 65 (2): 411–413. doi: 10.4103/neuroindia.NI_1160_15.

21. Lovaglio AC, Socolovsky M, Di Masi G et al. Treatment of neuropathic pain after peripheral nerve and brachial plexus traumatic injury. Neurol India 2019; 67 (Suppl): S32–S37. doi: 10.4103/0028-3886.250699.

22. Teixeira MJ, da Paz MG, Bina MT et al. Neuropathic pain after brachial plexus avulsion – central and peripheral mechanisms. BMC Neurol 2015; 15: 73. doi: 10.1186/s12883-015-0329-x.

23. Landi A, Copeland S. Value of the Tinel sign in brachial plexus lesions. Ann R Coll Surg Engl 1979; 61 (6): 470–471.

24. Fayssoil A, Behin A, Ogna A et al. Pathophysiology and ultrasound imaging in neuromuscular disorders. J Neuromuscul Dis 2018; 5 (1): 1–10. doi: 10.3233/JND-170276.

25. Nagano A, Ochiai N, Sugioka H et al. Usefulness of myelography in brachial plexus injuries. J Hand Surg Br 1989; 14 (1): 59–64. doi: 10.1016/0266-7681 (89) 90 017-x.

26. Abul-Kasim K, Backman C, Björkman A et al. Advanced radiological work-up as an adjunct to decision in early reconstructive surgery in brachial plexus injuries. J Brachial Plex Peripher Nerve Inj 2010; 5: 14. doi: 10.1186/1749-7221-5-14.

27. Gunes A, Bulut E, Uzumcugil A et al. Brachial plexus ultrasound and MRI in children with brachial plexus birth injury. AJNR Am J Neuroradiol 2018; 39 (9): 1745–1750. doi: 10.3174/ajnr.A5749.

28. Gu S, Zhao Q, Yao J et al. Dia­gnostic ability of ultrasonography in brachial plexus root injury at different stages post-trauma. Ultrasound Med Biol 2022; 48 (6): 1122–1130. doi: 10.1016/j.ultrasmedbio­.2022.02. 013.

29. Wiertel-Krawczuk A, Huber J. Standard neurophysiological studies and motor evoked potentials in evaluation of traumatic brachial plexus injuries – a brief review of the literature. Neurol Neurochir Pol 2018; 52 (5): 549–554. doi: 10.1016/j.pjnns.2018.05.004.

30. Antonovich D, Dua A. Electrodia­gnostic evaluation of brachial plexopathies. Treasure Island (FL): StatPearls Publishing 2022.

31. Burkholder LM, Houlden DA, Midha R et al. Neurogenic motor evoked potentials: role in brachial plexus surgery. Case report. J Neurosurg 2003; 98 (3): 607–610. doi: 10.3171/jns.2003.98.3.0607.

32. Vasko P, Bocek V, Mencl L et al. Preserved cutaneous silent period in cervical root avulsion. J Spinal Cord Med 2017; 40 (2): 175–180. doi: 10.1179/2045772315Y.0000000053.

33. Vaško P, Leis A, Boček V et al. Neurofyziologická vyšetření u traumatických lézí brachiálního plexu. Cesk Slov Neurol N 2016; 79/112 (5): 595–599.

34. Krishnan KR, Sneag DB, Feinberg JH et al. Localization of brachial plexopathies using a novel dia­gnostic program. HSS J 2022; 18 (1): 78–82. doi: 10.1177/1556331 6211001358.

35. Kim KH, Kim GY, Lim SG et al. A more precise electromyographic needle approach for examination of the rhomboid major. PM R 2018; 10 (12): 1380–1384. doi: 10.1016/j.pmrj.2018.05.009.

36. Uetani M, Hayashi K, Hashmi R et al. Traction injuries of the brachial plexus: signal intensity changes of the posterior cervical paraspinal muscles on MRI. J Comput Assist Tomogr 1997; 21 (5): 790–795. doi: 10.1097/00004728-199709000-00026.

37. Balakrishnan G, Kadadi BK. Clinical examination versus routine and paraspinal electromyographic studies in predicting the site of lesion in brachial plexus injury. J Hand Surg Am 2004; 29 (1): 140–143. doi: 10.1016/j.jhsa.2003.08.004.

38. Bordalo-Rodrigues M, Siqueira MG, Kurimori CO et al. Dia­gnostic accuracy of imaging studies for dia­gnosing root avulsions in post-traumatic upper brachial plexus traction injuries in adults. Acta Neurochir (Wien) 2020; 162 (12): 3189–3196. doi: 10.1007/s00701-020-04465-9.

39. Menorca RM, Fussell TS, Elfar JC. Nerve physiology – mechanisms of injury and recovery. Hand Clin 2013; 29 (3): 317–330. doi: 10.1016/j.hcl.2013.04.002.

40. Gordon T, English AW. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 2016; 43 (3): 336–350. doi: 10.1111/ejn.13005.

41. Kaiser R, Haninec P. Degeneration and regeneration of the peripheral nerve. Cesk Fysiol 2012; 61 (1): 9–14.

42. Gordon T, Amirjani N, Edwards DC et al. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol 2010; 223 (1): 192–202. doi: 10.1016/j.expneurol.2009.09.020.

43. Nordmark PF, Johansson RS. Disinhibition of human primary somatosensory cortex after median nerve transection and reinnervation. Front Hum Neurosci 2020; 14: 166. doi: 10.3389/fnhum.2020.00166.

44. Krarup C, Boeckstyns M, Ibsen A et al. Remodeling of motor units after nerve regeneration studied by quantitative electromyography. Clin Neurophysiol 2016; 127 (2): 1675–1682. doi: 10.1016/j.clinph.2015.08.008.

45. Feger MA, Isaacs J, Mallu S et al. Follistatin protein enhances satellite cell counts in reinnervated muscle. J Brachial Plex Peripher Nerve Inj 2022; 17 (1): e12–e21. doi: 10.1055/s-0042-1748535.

Labels
Paediatric neurology Neurosurgery Neurology
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#