#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Use of corneal confocal microscopy in neurological disorders


Authors: J. Štorm 1;  M. Česká Burdová 1;  V. Potočková 2;  R. Mazanec 2;  G. Mahelková 1
Authors‘ workplace: Oční klinika dětí a dospělých, 2. LF UK a FN Motol, Praha 1;  Neurologická klinika, 2. LF UK a FN Motol, Praha 2
Published in: Cesk Slov Neurol N 2021; 84/117(4): 341-346
Category: Review Article
doi: https://doi.org/10.48095/cccsnn2021341

Overview

Rohovková konfokální mikroskopie je rychlá a především neinvazivní zobrazovací metoda, která umožňuje zobrazit in vivo nervová vlákna subbazálního plexu rohovky. Tuto metodu lze využít při sledování postižení nervových vláken u řady neurologických onemocnění, zejména u skupiny chorob postihujících tzv. tenká nervová vlákna. Řada studií srovnává tuto metodu s dalšími, které jsou používány v klinické praxi při diagnostice těchto onemocnění, a potvrzuje vhodnost využití této metody jak pro diagnostiku časného rozvoje periferní neuropatie, tak i jako metodu sloužící k hodnocení klinického efektu léčby novými přístupy a preparáty u různých onemocnění. Ačkoliv stále chybí rozsáhlejší práce jednoznačně potvrzující validitu této metody, současné výsledky významně podporují možnosti její aplikace v praxi. Jedním z důvodů dosud malého využití je i její omezená dostupnost, nicméně vzhledem k postupujícímu výzkumu a dosaženým výsledkům lze do budoucna předpokládat širší využití nejen ve výzkumu, ale i v klinické praxi. Naším cílem bylo shrnout dosud publikované poznatky o využití této metody při sledování stavu nervových vláken u různých neurologických onemocnění.

Keywords:

Confocal microscopy – Cornea – small fiber neuropathy – peripheral neuropathies


Sources

1. Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea 2001; 20 (4): 374–384. doi: 10.1097/00003226-200105000-00008.

2. Shaheen BS, Bakir M, Jain S. Corneal nerves in health and disease. Surv Ophthalmol 2014; 59 (3): 263–285. doi: 10.1016/j.survophthal.2013.09.002.

3. Patel DV, McGhee CN. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 2005; 46 (12): 4485–4488. doi: 10.1167/iovs.05-0794.

4. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf 2017; 15 (1): 15–47. doi: 10.1016/j.jtos.2016.09.004.

5. Mahelková G, Česká Burdová M, Odehnal M et al. In vivo corneal confocal microscopy: basic principles and applications [in Czech]. Cesk Slov Oftalmol 2017; 73 (4): 155–160.

6. Petroll WM, Robertson DM. In vivo confocal microscopy of the cornea: new developments in image acquisition, reconstruction, and analysis using the HRT-Rostock Corneal Module. Ocul Surf 2015; 13 (3): 187–203. doi: 10.1016/j.jtos.2015.05.002.

7. Zhivov A, Stachs O, Stave J et al. In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium. Br J Ophthalmol 2009; 93 (5): 667–672. doi: 10.1136/bjo.2008.137430.

8. Petropoulos IN, Alam U, Fadavi H et al. Rapid automated dia­gnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy automated detection of diabetic neuropathy. Invest Ophthalmol Vis Sci 2014; 55 (4): 2071–2078. doi: 10.1167/iovs.13-13787.

9. Dehghani C, Pritchard N, Edwards K et al. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea 2014; 33 (7): 696–6702. doi: 10.1097/ico.0000000000000152.

10. Česká Burdová M, Kulich M, Dotřelová D et al. Effect of diabetes mellitus type 1 dia­gnosis on the corneal cell densities and nerve fibers [in Czech]. Physiol Res 2018; 67 (6): 963–974. doi: 10.33549/physiolres.933899.

11. Česká Burdová M, Lainová Vrabcová T, Dotřelová D et al. Possibilities of in vivo corneal confocal microscopy of corneal nerves in diabetes [in Czech]. Cesk Slov Oftalmol 2017; 73 (4): 161–167.

12. Mahelková G, Burdová MC, Malá Š et al. Higher total insulin dose has positive effect on corneal nerve fibers in DM1 patients [in Czech]. Invest Ophthalmol Vis Sci 2018; 59 (10): 3800–3807. doi: 10.1167/iovs.18-24265.

13. Williams BM, Borroni D, Liu R et al. An artificial intelligence-based deep learning algorithm for the dia­gnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 2020; 63 (2): 419–430. doi: 10.1007/s00125-019-05023-4.

14. Niederer RL, Perumal D, Sherwin T et al. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol 2007; 91 (9): 1165–1169. doi: 10.1136/bjo.2006.112656.

15. Tavakoli M, Ferdousi M, Petropoulos IN et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 2015; 38 (5): 838–843. doi: 10.2337/dc14-2311.

16. Hoeijmakers JG, Faber CG, Lauria G et al. Small-fibre neuropathies – advances in dia­gnosis, pathophysiology and management. Nat Rev Neurol 2012; 8 (7): 369–379. doi: 10.1038/nrneurol.2012.97.

17. Hovaguimian A, Gibbons CH. Dia­gnosis and treatment of pain in small-fiber neuropathy. Curr Pain and Headache Rep 2011; 15 (3): 193–200. doi: 10.1007/s11916-011-0181-7.

18. Vlckova-Moravcova E, Bednarik J, Belobradkova J et al. Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med 2008; 25 (6): 692–699. doi: 10.1111/j.1464-5491.2008.02446.x.

19. Ambler Z, Bednařík J, Růžička E a kol. Klinická neuro­logie část obecná. Praha: Triton 2008.

20. Terkelsen AJ, Karlsson P, Lauria G et al. The dia­gnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017; 16 (11): 934–944. doi: 10.1016/s1474-4422 (17) 30329-0.

21. Ambler Z, Bednařík J, Keller O. Doporučený postup pro praktické lékaře Česká lékařská společnost Jana Evangelisty Purkyně. [online]. Polyneuropatie 2002. Dostupné z URL: https: //www.cls.cz/seznam-doporucenych-postupu.

22. Sumner CJ, Sheth S, Griffin JW et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003; 60 (1): 108–111. doi: 10.1212/wnl.60.1.108.

23. Devigili G, Tugnoli V, Penza P et al. The dia­gnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 2008; 131 (7): 1912–1925. doi: 10.1093/brain/awn093.

24. Bednarik J, Vlckova-Moravcova E, Bursova S et al. Etiology of small-fiber neuropathy. J Peripher Nerv Syst 2009; 14 (3): 177–183. doi: 10.1111/j.1529-8027.2009.00229.x.

25. Themistocleous AC, Ramirez JD, Serra J et al. The clinical approach to small fibre neuropathy and painful channelopathy. Pract Neurol 2014; 14 (6): 368–379. doi: 10.1136/practneurol-2013-000758.

26. Lacigová S, Rušavý Z, Jirkovská A et al. Doporučený postup dia­gnostiky a léčby diabetické neuropatie. Diabetologie, metabolismus, endokrinologie, výživa 2016; 19 (2): 57–63.

27. Ponirakis G, Fadavi H, Petropoulos IN et al. Automated quantification of neuropad improves its dia­gnostic ability in patients with diabetic neuropathy. J Diabetes Res 2015; 2015: 847854. doi: 10.1155/2015/847854.

28. Potočková V, Malá Š, Tomek A et al. Význam testování termických prahů v detekci neuropatie tenkých vláken u diabetiků 1. typu. Cesk Slov Neurol N 2016; 79 (6): 692–697.

29. Smith AG, Lessard M, Reyna S et al. The dia­gnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complications 2014; 28 (4): 511–516. doi: 10.1016/j.jdiacomp.2014.02.013.

30. Raputová J, Vlčková E, Kočica J et al. Evokované potenciály vyvolané kontaktním teplem – vliv fyziologic­kých proměnných. Cesk Slov Neurol N 2019; 82 (1): 76–83. doi: 10.14735/amcsnn201976.

31. Perkins BA, Lovblom LE, Bril V et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 2018; 61 (8): 1856–1861. doi: 10.1007/s00125-018-4653-8.

32. Ahmed A, Bril V, Orszag A et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 2012; 35 (4): 821–828. doi: 10.2337/dc11-1396.

33. Hertz P, Bril V, Orszag A et al. Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathy. Diabet Med 2011; 28 (10): 1253–1260. doi: 10.1111/j.1464-5491.2011.03299.x.

34. Kovaľová I, Horáková M, Vlčková E et al. Hodnocení rohovkové inervace pomocí konfokální mikroskopie. Cesk Slov Neurol N 2017; 80 (1): 49–57. doi: 10.14735/amcsnn201749.

35. Azmi S, Jeziorska M, Ferdousi M et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019; 62 (8): 1478–1487. doi: 10.1007/s00125-019-4897-y.

36. Tavakoli M, Quattrini C, Abbott C et al. Corneal confocal microscopy: a novel noninvasive test to dia­gnose and stratify the severity of human diabetic neuropathy. Diabetes Care 2010; 33 (8): 1792–1797. doi: 10.2337/dc10-0253.

37. Asghar O, Petropoulos IN, Alam U et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014; 37 (9): 2643–2646. doi: 10.2337/dc14-0279.

38. Mehra S, Tavakoli M, Kallinikos PA et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007; 30 (10): 2608–2612. doi: 10.2337/dc07-0870.

39. Tavakoli M, Boulton AJ, Efron N et al. Increased Langerhan cell density and corneal nerve damage in diabetic patients: role of immune mechanisms in human diabetic neuropathy. Cont Lens Anterior Eye 2011; 34 (1): 7–11. doi: 10.1016/j.clae.2010.08.007.

40. Ferdousi M, Romanchuk K, Mah JK et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci Rep 2019; 9 (1): 1–6. doi: 10.1038/s41598-019-45 116-z.

41. Schaldemose EL, Hammer RE, Ferdousi M et al. An unbiased stereological method for corneal confocal microscopy in patients with diabetic polyneuropathy. Sci Rep 2020; 10 (1): 12550. doi: 10.1038/s41598-020-69314-2.

42. Argyriou AA, Kyritsis AP, Makatsoris T et al. Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res 2014; 6: 135–147. doi: 10.2147/CMAR.S44261.

43. Ferdousi M, Azmi S, Petropoulos IN et al. Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PLoS One 2015; 10 (10): e0139394. doi: 10.1371/journal.pone.0139394.

44. Kemp HI, Petropoulos IN, Rice ASC et al. Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol 2017; 135 (7): 795–800. doi: 10.1001/jamaophthalmol.2017.1703.

45. Rousseau A, Cauquil C, Dupas B et al. Potential role of in vivo confocal microscopy for imaging corneal nerves in transthyretin familial amyloid polyneuropathy. JAMA Ophthalmol 2016; 134 (9): 983–989. doi: 10.1001/jamaophthalmol.2016.1889.

46. Oudejans L, Niesters M, Brines M et al. Quantification of small fiber pathology in patients with sarcoidosis and chronic pain using cornea confocal microscopy and skin bio­psies. J Pain Res 2017; 10: 2057–2065. doi: 10.2147/jpr.s142683.

47. Bitirgen G, Turkmen K, Malik RA et al. Corneal confocal microscopy detects corneal nerve damage and increased dendritic cells in Fabry disease. Sci Rep 2018; 8 (1): 12244. doi: 10.1038/s41598-018-30688-z.

48. Pitarokoili K, Sturm D, Labedi A et al. Neuroimaging markers of clinical progression in chronic inflammatory demyelinating polyradiculoneuropathy. Ther Adv Neurol Disord 2019; 12: 175628641985548. doi: 10.1177/1756286419855485.

49. Stettner M, Hinrichs L, Guthoff R et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol 2015; 3 (2): 88–100. doi: 10.1002/acn3.275.

50. Schneider C, Bucher F, Cursiefen C et al. Corneal confocal microscopy detects small fiber damage in chronic inflammatory demyelinating polyneuropathy (CIDP). J Peripher Nerv Syst 2014; 19 (4): 322–327. doi: 10.1111/jns.12098.

51. Ghasemi M, Rajabally YA. Small fiber neuropathy in unexpected clinical settings: a review. Muscle Nerve 2020; 62 (2): 167–175. doi: 10.1002/mus.26808.

52. Evdokimov D, Frank J, Klitsch A et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol 2019; 86 (4): 504–516. doi: 10.1002/ana.25565.

53. Grayston R, Czanner G, Elhadd K et al. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: implications for a new paradigm in fibromyalgia etiopathogenesis. Semin Arthritis Rheum 2019; 48 (5): 933–940. doi: 10.1016/j.semarthrit.2018.08.003.

54. Klitsch A, Evdokimov D, Frank J et al. Reduced association between dendritic cells and corneal sub-basal nerve fibers in patients with fibromyalgia syndrome. J Peripher Nerv Syst 2020; 25 (1): 9–18. doi: 10.1111/jns.12360.

55. Chaudhuri KR, Healy DG, Schapira AH et al. Non-motor symptoms of Parkinson‘s disease: dia­gnosis and management. Lancet Neurol 2006; 5 (3): 235–245. doi: 10.1016/S1474-4422 (06) 70373-8.

56. Lin CH, Chao CC, Wu SW et al. Pathophysiology of small-fiber sensory system in Parkinson‘s disease: skin innervation and contact heat evoked potential. Medicine (Baltimore) 2016; 95 (10): e3058. doi: 10.1097/MD.00 00000000003058.

57. Kass-Iliyya L, Javed S, Gosal D et al. Small fiber neuropathy in Parkinson‘s disease: a clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat Disord 2015; 21 (12): 1454–1460. doi: 10.1016/j.parkreldis.2015.10.019.

58. Podgorny PJ, Suchowersky O, Romanchuk KG et al. Evidence for small fiber neuropathy in early Parkinson‘s disease. Parkinsonism Relat Disord 2016; 28: 94–99. doi: 10.1016/j.parkreldis.2016.04.033.

59. Nolano M, Provitera V, Manganelli F et al. Loss of cutaneous large and small fibers in naive and l-dopa-treated PD patients. Neurology 2017; 89 (8): 776–784. doi: 10.1212/WNL.0000000000004274.

60. Corneal confocal microscopy: a novel imaging bio­marker for Parkinson‘s disease. [online]. Michael J. Fox foundation for Parkinson’s research. Dostupné z URL: https: //www.michaeljfox.org/grant/corneal-confocal-microscopy-novel-imaging-bio­marker-parkinsons-disease.

61. Petropoulos IN, Kamran S, Li Y et al. Corneal confocal microscopy: an imaging endpoint for axonal degeneration in multiple sclerosis. Invest Opthalmol Vis Sci 2017; 58 (9): 3677–3681. doi: 10.1167/iovs.17-22050.

62. Bitirgen G, Akpinar Z, Malik RA et al. Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis. JAMA Ophthalmol 2017; 135 (7): 777–782. doi: 10.1001/jamaophthalmol.2017.1590.

63. Dehghani C, Frost S, Jayasena R et al. Ocular bio­markers of Alzheimer‘s disease: the role of anterior eye and potential future directions. Invest Opthalmol Vis Sci 2018; 59 (8): 3554–3563. doi: 10.1167/iovs.18-24694.

64. Ponirakis G, Hamad HA, Sankaranarayanan A et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann Clin Transl Neurol 2019; 6 (4): 689–697. doi: 10.1002/acn3.746.

65. Khan A, Akhtar N, Kamran S et al. Corneal confocal microscopy detects corneal nerve damage in patients admitted with acute ischemic stroke. Stroke 2017; 48 (11): 3012–3018. doi: 10.1161/strokeaha.117.018289.

66. Khan A, Kamran S, Akhtar N et al. Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke. Sci Rep 2018; 8 (1): 17333. doi: 10.1038/s41598-018-35298-3.

67. Kamran S, Khan A, Salam A et al. Cornea: A window to white matter changes in stroke; corneal confocal microscopy a surrogate marker for the presence and severity of white matter hyperintensities in ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29 (3): 104543. doi: 10.1016/j.jstrokecerebrovasdis.2019.104543.

68. Pagovich OE, Vo ML, Zhao ZZ et al. Corneal confocal microscopy: neurologic disease bio­marker in Friedreich ataxia. Ann Neurol 2018; 84 (6): 893–904. doi: 10.1002/ana.25355.

69. Ferrari G, Grisan E, Scarpa F et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6: 278. doi: 10.3389/fnagi.2014.00278.

70. Tavakoli M, Marshall A, Banka S et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot-Marie-Tooth disease type 1A patients. Muscle Nerve 2012; 46 (5): 698–704. doi: 10.1002/mus.23377.

71. Bitirgen G, Kayitmazbatir ET, Satirtav G et al. In vivo confocal microscopic evaluation of corneal nerve fibers and dendritic cells in patients with Behçet’s disease. Front Neurol 2018; 9: 204. doi: 10.3389/fneur.2018.00204.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery

Issue 4

2021 Issue 4

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#