Copper homeostasis as a therapeutic goal in amyotrophic lateral sclerosis with a mutation in superoxide dismutase 1 and CuATSM molecule
Authors:
P. Hemerková; M. Vališ
Authors‘ workplace:
Neurologická klinika LF UK a FN Hradec Králové
Published in:
Cesk Slov Neurol N 2020; 83(1): 21-27
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn202021
Overview
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of motor neurons in the cerebral cortex, brain stem, and spinal cord leading to loss of muscle control and death from respiratory failure occurring mostly within 3–5 years of the disease diagnosis. The majority of ALS cases are sporadic (sALS); however, 5–10% are familial cases (fALS). Approximately 20% of fALS cases and 2–7% of sALS cases are associated with a mutation in the SOD1 gene that encodes the copper-zinc superoxide dismutase 1 enzyme (SOD1). The most common free radical arising in the human body is a not very reactive, and thus, not a very harmful superoxide which, however, is capable of spontaneous conversion by dismutation to hydrogen peroxide. SOD1 accelerates this dismutation and the produced hydrogen peroxide is eliminated by successive reactions. The mutations affecting SOD1 lead to copper dyshomeostasis in the spinal cord of animal (mice) models of ALS. Currently, the Cu2+ diacetyl-di, N4-methylthiosemicarbazone molecule is being tested in Australia in a phase I/II clinical trial in patients with ALS. It is assumed that this molecule could work not only in cases of ALS with SOD1 mutation (SOD1-ALS) as a copper or zinc carrier allowing their interaction with SOD1, and thus, it’s the proper function of the enzyme, but also as a compound for peroxynitrite uptake. As a result, its therapeutic use appears not to be limited only to cases of SOD1-ALS or ALS in general, but it might also have an effect as a compound to reduce cell damage by oxidative and nitrosative stress in other neurodegenerative diseases.
Keywords:
amyotrophic lateral sclerosis – copper-zinc superoxide dismutase – Cu2+ diacetyl-di, N4-methylthiosemicarbazone
Sources
1. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4: 3. doi: 10.1186/ 1750-1172-4-3.
2. Niedermeyer S, Murn M, Choi PJ. Respiratory failure in amyotrophic lateral sclerosis. Chest 2019; 155(2): 401– 408. doi: 10.1016/ j.chest.2018.06.035.
3. Alsultan AA, Waller R, Heath PR et al. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6: 49– 64. doi: 10.2147/ DNND.S84956.
4. Nguyen HP, Van Broeckhoven C, van der Zee J. ALS genes in the genomic era and their implications for FTD. Trends Genet 2018; 34(6): 404– 423. doi: 10.1016/ j.tig.2018.03.001.
5. Laferriere F, Polymenidou M. Advances and challenges in understanding the multifaceted pathogenesis of amyotrophic lateral sclerosis. Swiss Med Wkly 2015; 145: w14054. doi: 10.4414/ smw.2015.14054.
6. Lomen-Hoerth C, Murphy J, Langmore S et al. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 2003; 60(7): 1094– 1097. doi: 10.1212/ 01.wnl.0000055861.95202.8d.
7. Strong MJ. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2008; 9(6): 323– 338. doi: 10.1080/ 17482960802372371.
8. Rosen DR, Siddique T, Patterson D et al. Mutations in Cu/ Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59– 62. doi: 10.1038/ 362059a0.
9. Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539(7628): 197– 206. doi: 10.1038/ nature20413.
10. Jackson M, Al-Chalabi A, Enayat ZE. Copper/ zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of a novel insertion mutation. Ann Neurol 1997; 42(5): 803– 807. doi: 10.1002/ ana.410420518.
11. Racek J. Superoxiddismutáza. [online]. Dostupné z URL: https:/ / www.krevnicentrum.cz/ laboratorni-prirucka/ BOJRAAI.htm.
12. Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 2005; 74: 563– 593. doi: 10.1146/ annurev.biochem.72.121801.161647.
13. Leinartaite L, Saraboji K, Nordlund A et al. Folding catalysis by transient coordination of Zn2+ to the Cu ligands of the ALS-associated enzyme Cu/ Zn superoxide dismutase 1. J Am Chem Soc 2010; 132(38): 13495– 13504. doi: 10.1021/ ja1057136.
14. Banci L, Bertini I, Cantini F et al. Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci USA 2012; 109(34): 13555– 13560. doi: 10.1073/ pnas.1207493109.
15. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244(22): 6049– 6055.
16. Franco MC, Dennys CN, Rossi FH et al. Superoxide dismutase and oxidative stress in amyotrophic lateral sclerosis. [online]. Available from URL: https:/ / www.intechopen.com/ books/ current-advances-in-amyotrophic-lateral-sclerosis/ superoxide-dismutase-and-oxidative-stress-in-amyotrophic-lateral-sclerosis.
17. Allison WT, DuVal MG, Nguyen-Phuoc K. Reduced Abundance and subverted functions of proteins in prion-like diseases: gained functions fascinate but lost functions affect aetiology. Int J Mol Sci 2017; 18(10): E2223. doi: 10.3390/ ijms18102223.
18. Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 2012; 133(2): 177– 188. doi: 10.1016/ j.pharmthera.2011.10.006.
19. Choi BS, Zheng W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 2009; 1248: 14– 21. doi: 10.1016/ j.brainres.2008.10.056.
20. Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2013; 62(5): 556– 565. doi: 10.1016/ j.neuint.2012.08.017.
21. West AK, Hidalgo J, Eddins D et al. Metallothionein in the central nervous system: roles in protection, regeneration and cognition. Neurotoxicology 2008; 29(3): 489– 503. doi: 10.1016/ j.neuro.2007.12.006.
22. Kuo YM, Zhou B, Cosco D et al. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 2001; 98(12): 6836– 6841. doi: 10.1073/ pnas.111057298.
23. Arredondo M, Muñoz P, Mura CV et al. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 2003; 284(6): C1525– C1530. doi: 10.1152/ ajpcell.00480.2002.
24. Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci USA 2003; 100(3): 1215– 1220. doi: 10.1073/ pnas.0336230100.
25. Wong PC, Waggoner D, Subramaniam JR et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/ Zn superoxide dismutase. Proc Natl Acad Sci USA 2000; 97(6): 2886– 2891. doi: 10.1073/ pnas.040461197.
26. Furukawa Y, Torres AS, O’Halloran TV. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 2004; 23(14): 2872– 2881. doi: 10.1038/ sj.emboj.7600276.
27. Gurney ME, Pu H, Chiu AY et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 1994; 264(5166): 1772– 1775. doi: 10.1126/ science.8209258.
28. Tokuda E, Okawa E, Watanabe S et al. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1s regardless of their copper-binding abilities. Neurobiol Dis 2013; 54: 308– 319. doi: 10.1016/ j.nbd.2013.01.001.
29. Tokuda E, Okawa E, Ono SI et al. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/ zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J Neurochem 2009; 111(1): 181– 191. doi: 10.1111/ j.1471-4159.2009.06310.x.
30. Williams JR, Trias E, Beilby PR et al. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol Dis 2016; 89: 1– 9. doi: 10.1016/ j.nbd.2016.01.020.
31. Domzał T, Radzikowska B. Ceruloplasmin and copper in the serum of patients with amyotrophic lateral sclerosis (ALS). Neurol Neurochir Pol 1983; 17(3): 343– 346.
32. Gellein K, Garruto RM, Syversen T et al. Concentrations of Cd, Co, Cu, Fe, Mn, Rb, V, and Zn in formalin-fixed brain tissue in amyotrophic lateral sclerosis and Parkinsonism-dementia complex of Guam determined by High-resolution ICP-MS. Biol Trace Elem Res 2003; 96(1– 3): 39– 60. doi: 10.1385/ BTER:96:1-3:39.
33. Hozumi I, Hasegawa T, Honda A et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 2011; 303(1– 2): 95– 99. doi: 10.1016/ j.jns.2011.01.003.
34. Genoud S, Roberts BR, Gunn AP et al. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 2017; 9(10): 1447– 1455. doi: 10.1039/ c7mt00244k.
35. Miller LM, Wang Q, Telivala TP et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 2006; 155(1): 30– 37. doi: 10.1016/ j.jsb.2005.09.004.
36. Schrag M, Mueller C, Oyoyo U et al. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 2011; 94(3): 296– 306. doi: 10.1016/ j.pneurobio.2011.05.001.
37. Hottinger AF, Fine EG, Gurney ME et al. The copper chelator D-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci 1997; 9(7): 1548– 1551. doi: 10.1111/ j.1460-9568.1997.tb01511.x.
38. Andreassen OA, Dedeoglu A, Friedlich A et al. Effects of an inhibitor of poly(ADP-ribose) polymerase, desmethylselegiline, trientine, and lipoic acid in transgenic ALS mice. Exp Neurol 2001; 168(2): 419– 424. doi: 10.1006/ exnr.2001.7633.
39. Tokuda E, Ono S, Ishige K et al. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp Neurol 2008; 213(1): 122– 128. doi: 10.1016/ j.expneurol.2008.05.011.
40. Ogra Y, Suzuki KT. Targeting of tetrathiomolybdate on the copper accumulating in the liver of LEC rats. J Inorg Biochem 1998; 70(1): 49– 55. doi: 10.1016/ S0162-0134(98)00012-9.
41. Hozumi I, Asanuma M, Yamada M et al. Metallothioneins and neurodegenerative diseases. J Health Sci 2004; 50(4): 323– 331. doi: 10.1248/ jhs.50.323.
42. Piotrowski JK, Trojanowska B, Sapota A. Binding of cadmium and mercury by metallothionein in the kidneys and liver of rats following repeated administration. Arch Toxicol 1974; 32(4): 351– 360. doi: 10.1007/ BF00330118.
43. Richards MP. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J Nutr 1989; 119(7): 1062– 1070. doi: 10.1093/ jn/ 119.7.1062.
44. Murakami S, Miyazaki I, Sogawa N et al. Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice. Neurotox Res 2014; 26(3): 285– 298. doi: 10.1007/ s12640-014-9480-1.
45. Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2013; 62(5): 556– 565. doi: 10.1016/ j.neuint.2012.08.017.
46. Nakamura S, Shimazawa M, Hara H. Physiological roles of metallothioneins in central nervous system diseases. Biol Pharm Bull 2018; 41(7): 1006– 1013. doi: 10.1248/ bpb.b17-00856.
47. Tokuda E, Watanabe S, Okawa E et al. Regulation of intracellular copper by induction of endogenous metallothioneins improves the disease course in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics 2015; 12(2): 461– 476. doi: 10.1007/ s13311-015-0346-x.
48. Ono SI. Metallothionein is a potential therapeutic strategy for amyotrophic lateral sclerosis. Curr Pharm Des 2017; 23(33): 5001– 5009. doi: 10.2174/ 1381612823666170622105513.
49. Hashimoto K, Hayashi Y, Inuzuka T et al. Exercise induces metallothioneins in mouse spinal cord. Neuroscience 2009; 163(1): 244– 251. doi: 10.1016/ j.neuroscience.2009.05.067.
50. Eidizadeh A, Trendelenburg G. Focusing on the protective effects of metallothionein-I/ II in cerebral ischemia. Neural Regen Res 2016; 11(5): 721– 722. doi: 10.4103/ 1673-5374.182689.
51. Otevřel F, Smrčka M, Kuchtíčková Š et al. Korelace ptiO2 a apoptózy u fokální mozkové ischemie a vliv systémové hypertenze. Cesk Slov Neurol N 2007; 70/ 103(2): 168– 173.
52. Vieira FG, Hatzipetros T, Thompson K et al. CuATSM efficacy is independently replicated in a SOD1 mouse model of ALS while unmetallated ATSM therapy fails to reveal benefits. IBRO Rep 2017; 2: 47– 53. doi: 10.1016/ j.ibror.2017.03.001.
53. Vāvere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 2007; (43): 4893– 4902. doi: 10.1039/ b705989b.
54. Farrawell NE, Yerbury MR, Plotkin SS et al. CuATSM Protects against the in vitro cytotoxicity of wild-type-like copper-zinc superoxide dismutase mutants but not mutants that disrupt metal binding. ACS Chem Neurosci 2019; 10(3): 1555– 1564. doi: 10.1021/ acschemneuro.8b00527.
55. Roberts BR, Lim NK, McAllum EJ et al. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2014; 34(23): 8021– 8031. doi: 10.1523/ JNEUROSCI.4196-13.2014.
56. McAllum EJ, Lim NK, Hickey JL et al. Therapeutic effects of CuII(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14(7– 8): 586– 590. doi: 10.3109/ 21678421.2013.824000.
57. McAllum EJ, Roberts BR, Hickey JL et al. Zn II(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism. Neurobiol Dis 2015; 81: 20– 24. doi: 10.1016/ j.nbd.2015.02.023.
58. Ermilova IP, Ermilov VB, Levy M et al. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett 2005; 379(1): 42– 46. doi: 10.1016/ j.neulet.2004.12.045.
59. Soon CP, Donnelly PS, Turner BJ et al. Diacetylbis (N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model. J Biol Chem 2011; 286(51): 44035– 44044. doi: 10.1074/ jbc.M111.274407.
60. Štětkářová I, Matěj R, Ehler E. Nové poznatky v diagnostice a léčbě amyotrofické laterální sklerózy. Cesk Slov Neurol N 2018; 81(5): 546– 554. doi: 10.14735/ amcsnn2018546.
Labels
Paediatric neurology Neurosurgery NeurologyArticle was published in
Czech and Slovak Neurology and Neurosurgery
2020 Issue 1
Most read in this issue
- Neonatal seizures – current view of the issue
- Possible prevention of Alzheimer’s disease
- The primary Non-Hodgkin’s central nervous system lymphoma
- Neuropsychiatric symptoms as early manifestation of Alzheimer’s disease