#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Monitoring of Patients with Severe Head Injury


Authors: prof. MUDr. Martin Smrčka, CSc.
Authors‘ workplace: Neurochirurgická klinika LF MU a FN Brno
Published in: Cesk Slov Neurol N 2011; 74/107(1): 9-21
Category: Minimonography

Overview

Head injury is defined as severe in patients with a post-resuscitation Glasgow coma scale (GCS) figure of ≤8. Such patients are relatively deeply unconscious and cannot follow instructions. Therefore we need continuously to monitor those parameters that provide us with important information regarding patient condition and brain function. In recent years, the possibility of monitoring certain cerebral and intracranial function parameters has been added to the routine intensive care watch repertoire of pulse oxymetry, blood pressure, body temperature, laboratory monitoring, central venous pressure, fluid balance, end-tidal CO2, etc. Monitoring of neurological status, particularly the level of consciousness (GCS) and the pupils is obvious. In terms of invasive intracranial monitoring it is currently practically mandatory that intracranial pressure (ICP) be monitored, either by means of external ventricular drainage or by intraparenchymal probe. As well as this, we monitor cerebral perfusion pressure (CPP). Monitoring of brain tissue oxymetry (PtiO2) is becoming a standard modality, while microdialysis is also frequent in some departments. CT monitoring is very important to the clinician, particularly in the initial phases after the injury, mainly as an indication for decision-making in certain operative procedures. Individual approaches to multimodal monitoring have to be evaluated in relationship to one another and the patient. Special types of software help us to evaluate the indices of vascular reactivity and this knowledge is currently used to establish the optimal CPP for the individual patient. Monitoring of cerebral physiology should not be purposeless, but should serve for early diagnostics of pathological conditions and at the same time may indicate a correctly performed therapeutical intervention.

Key words:
severe head injury – multimodal monitoring


Sources

1. Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F et al. EBIC-Guidelines for Management of Severe Head Injury in Adults. European Brain Injury Consortium. Acta Neurochir 1997; 139(4): 286–294.

2. The American Association of Neurological Surgeons. Brain Trauma Foundation. J Neurotrauma1996; 13(11): 639–734.

3. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus 2008; 25(4): E2.

4. Puccio AM, Fischer MR, Jankowitz BT, Yonas H, Darby JM, Okonkwo DO. Induced normothermia attenuates intracranial hypertension and reduces fever burden after severe traumatic brain injury. Neurocrit Care 2009; 11(1): 82–87.

5. Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM 2010; 12(4): 355–364.

6. Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol 2007; 68(4): 387–393.

7. Powner DJ, Miller ER, Levine RL. CVP and PAoP measurements are discordant during fluid therapy after traumatic brain injury. J Intensive Care Med 2005; 20(1): 28–33.

8. Rodling Wahlström M, Olivecrona M, Nyström F, Koskinen LO, Naredi S. Fluid therapy and the use of albumin in the treatment of severe traumatic brain injury. Acta Anaesthesiol Scand 2009; 53(1): 18–25.

9. Jiménez R, Casado-Flores J, Nieto M, García-Teresa MA. Cerebral salt wasting syndrome in children with acute central nervous system injury. Pediatr Neurol 2006; 35(4): 261–263.

10. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 2(7872): 81–84.

11. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Indications for intracranial pressure monitoring. J Neurotrauma 2007; 24 (Suppl 1): S37.

12. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Recommendations for intracranial pressure monitoring technology. J Neurotrauma 2007; 24 (Suppl 1): S45.

13. Schneider GH, Bardt T, Lanksch WR, Unterberg. A.Decompressive craniectomy following traumatic brain injury: ICP, CPP and neurological outcome. Acta Neurochir Suppl 2002; 81: 77–79.

14. Mayhall CG, Archer NH, Lamb VA, Spadora AC, Baggett JW, Ward JD et al. Ventriculostomy related infections. A prospective epidemiologic study. N Engl J Med 1984; 310(9): 553–559.

15. Narayan RK, Kishore PRS, Becker DP, Ward JD, Enas GG, Greenbert RP et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg 1982; 56(5): 650–659.

16. Yablon JS, Lantner HJ, McCormack TM, Nair S, Barker E, Black P. Clinical experience with a fiberoptic intracranial pressure monitor. J Clin Monit 1993; 9(3): 171–175.

17. Paramore CG, Turner DA. Relative risks of ventriculostomy infection and morbidity. Acta Neurochir (Wien) 1994; 127(1–2): 79–84.

18. Piek J, Kosub B, Kuch F et al. A practical technique for continuous monitoring of cerebral tissue pressure in neurosurgical practice – Experiences with 100 patients. Intensive Care Med 1990; 16: 184–188.

19. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 1960; 36 (149): 1–193.

20. Welch K. The intracranial pressure in infants. J Neurosurg 1980; 52: 693–699.

21. Langfitt TW. Increased intracranial pressure. Clin Neurosurg 1969; 16: 436–471.

22. Miller JD, Garibi J, Pickard JD. Induced changes of cerebrospinal fluid volume: Effects during continuous monitoring of ventricular fluid pressure. Arch Neurol 1973; 28(4): 265–269.

23. Maset AL, Marmarou A, Ward JD, Choi S, Lutz HA, Brooks D et al. Pressure-volume index in head injury. J Neurosurg 1987; 67(6): 832–840.

24. White H, Venkatesh B. Cerebral perfusion pressure in neurotrauma: a review. Anesth Analg 2008; 107(3): 979–988.

25. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 2002 Apr; 30(4): 733–738.

26. Smielewski P, Lavinio A, Timofeev I, Radolovich D, Perkes I, Pickard JD, Czosnyka M. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochir Suppl 2008; 102: 145–151.

27. Hatiboğlu MT, Anil A. Structural variations in the jugular foramen of the human skull. J Anat 1992; 180(1): 191–196.

28. Stocchetti N, Paparella A, Bridelli F, Bacchi M, Piazza P, Zuccoli P. Cerebral venous oxygen saturation studied using bilateral samples in the jugular veins. Neurosurgery 1994; 34(1): 38–44.

29. Gibbs EL, Lennox WG, Nims, Gibbs FA. Arterial and cerebral venous blood: Arterial-venous differences in man. J Biol Chem 1942; 144: 325–332.

30. Cruz J. On-line monitoring of global cerebral hypoxia in acute brain injury: Relationship to intracranial hypertension. J Neurosurg 1993; 79(2): 228–233.

31. Robertson CS, Contant CF, Gokaslan ZL, Narayan RK, Grossman RG. Cerebral blood flow, arteriovenous oxygen difference, and outcome in head injured patients. J Neurol Neurosurg Psychiatry 1992; 55(7): 594–603.

32. Contant CF, Robertson CS, Gopinath SP et al. Determination of clinically important thresholds in continuously monitored patients with head injury. J Neurotrauma 1993; 10 (Suppl 1): S102.

33. Cruz J. Combined continuous monitoring of systemic and cerebral oxygenation in acute brain injury: Preliminary observations. Crit Care Med 1993; 21(8): 1225–1232.

34. Poca MA, Sahuquillo J, Monforte R, Vilalta A. Global systems for monitoring cerebral hemodynamics in the neurocritical patient: basic concepts, controversies and recent advances in measuring jugular bulb oxygenation. Neurochirugia (Astur) 2005; 16(4): 301–322.

35. Hlatky R, Robertson CS. Multimodality monitoring in severe head injury. Curr Opin Anaesthesiol 2002; 15(5): 489–493.

36. Nortje J, Coles JP, Timofeev I, Fryer TD, Aigbirhio FI, Smielewski P et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 2008; 36(1): 273–381.

37. Dings J, Meixensberger J, Jager A, Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 1998; 43(5): 1082–1095.

38. Hoelper BM, Alessandri B, Heimann A, Behr R, Kempski O. Brain oxygen monitoring: in-vitro accuracy, long--term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochir (Wien) 2005; 147(7): 767–774.

39. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA et al. Diffusion limited oxygen delivery following head injury. Crit Care Med 2004; 32(6): 1384–1390.

40. Johnston AJ, Steiner LA, Coles JP, Chatfield DA, Fryer TD, Smielewski P et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 2005; 33(1): 189–195.

41. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 1996; 85(5): 751–757.

42. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 1998; 26(9): 1576–1581.

43. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C et al. Brain oxygen tension in severe head injury. Neurosurgery 2000; 46(4): 868–876.

44. Filippi R, Reisch R, Mauer D, Perneczky A. Brain tissue pO2 related to SjvO2, ICP, and CPP in severe brain injury. Neurosurg Rev 2000; 23(2): 94–97.

45. Jaeger M, Soehle M, Meixensberger J. Improvement of brain tissue oxygen and intracranial pressure during and after surgical decompression for diffuse brain oedema and space occupying infarction. Acta Neurochir Suppl 2005; 95: 117–118.

46. Hejčl A, Bartoš R, Humhej I, Bolcha M, Bejšovec D, Procházka J, Sameš M. Dekompresivní kraniektomie v léčbě posttraumatického edému mozku a přínos nových monitorovacích metod. Čas Lék čes 2007; 146(4): 307–312.

47. Gál R, Smrčka M, Štourač P, Straževská E, Neuman E. Měření tkáňového kyslíku v mozku jako součást multimodálního monitorování: kazuistiky. Cesk Slov Neurol N 2007; 70/103(5): 562–566.

48. Filaun M, Horáček M, Steindler J, Pekař L, Cvachovec K. Monitorování mozkové oxygenece. Cesk Slov Neurol N 2008; 71/104(6): 657–663.

49. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J Neurosurg 1995; 83(6): 963–970.

50. Zweifel C, Castellani G, Czosnyka M, Helmy A, Manktelow A, Carrera E et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 2010; 27(11): 1951–1958.

51. Büchner K, Meixensberger J, Dings J, Roosen K. Near-infrared spectroscopy – not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir. 2000; 61(2): 69–73.

52. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien) 2005; 147(1): 51–56.

53. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 2010; 114(1): 62–70.

54. Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974; 30(1–3): 44–55.

55. Ståhl N, Ungerstedt U, Nordström CH. Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med 2001; 27(7): 1215–1223.

56. Gautschi OP, Seule M, Cadosch D, Land M, Fournier JY, Hildebrandt G. Cerebral microdialysis. Options and limits. Anasthesiol Intensivmed Notfallmed Schmerzther 2009; 44(4): 268–274.

57. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 2008; 150(5): 461–469.

58. Hejčl A, Sameš M. Mikrodialýza v neurochirurgii, Cesk Slov Neurol N 2009; 72/105(6): 511–517.

59. Sinclair HL, Andrews PJ. Bench-to-bedside review: Hypothermia in traumatic brain injury. Crit Care 2010; 14(1): 204.

60. Wintermark M, Sincic R, Sridhar D, Chien JD. Cerebral perfusion CT: technique and clinical applications. J Neuroradiol 2008; 35(5): 253–260.

Labels
Paediatric neurology Neurosurgery Neurology

Article was published in

Czech and Slovak Neurology and Neurosurgery


2011 Issue 1

Most read in this issue
Topics Journals
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#