Near-infrared spectroscopy in the assessment of hemodynamic changes in newborns
Authors:
P. Korček 1,2; Z. Straňák 1,2
Authors‘ workplace:
Ústav pro péči o matku a dítě, Praha
1; 3. lékařská fakulta Univerzity Karlovy, Praha
2
Published in:
Čes-slov Neonat 2022; 28 (1): 42-48.
Category:
Reviews
Overview
Non-invasive monitoring of sick infants in the neonatal intensive care unit has become an important part of modern care. Bed-side monitoring using near-infrared spectroscopy (NIRS) could provide valuable pieces of information about hemodynamic disturbances that are significantly associated with neurologic morbidities and increased mortality in vulnerable newborns. NIRS evaluates cerebral perfusion and oxygenation, and in conjunction with other imaging methods (functional echocardiography), clinical assessment (heart rate, blood pressure, urine output, capillary refill time) and biochemical parameters (acid-base homeostasis, lactate level) may give us a more complete picture about tissue perfusion. These tools could help us optimize therapy and reduce mortality and incidence of severe neurologic morbidities that significantly impair long-term outcome.
Keywords:
Near-infrared spectroscopy – cerebral hemodynamics – autoregulation – tissue oxygenation – neonatal morbidity and mortality
Sources
1. Kenosi M, Naulaers G, Ryan CA, Dempsey EM. Current research suggests that the future looks brighter for cerebral oxygenation monitoring in preterm infants. Acta Paediatr 2015; 104: 225–231.
2. Korček P, Straňák Z, Širc J, Naulaers G. The role of near-infrared spectroscopy monitoring in preterm infants. J Perinatol 2017; 37: 1070–1077.
3. da Costa CS, Greisen G, Austin T. Is near-infrared spectroscopy clinically useful in the preterm infant? Arch Dis Child Fetal Neonatal Ed 2015; 100: 558–561.
4. Sood BG, McLaughlin K, Cortez J. Near-infrared spectroscopy: Applications in neonates. Semin Fetal Neonatal Med 2015; 20: 164–172.
5. Liem KD, Greisen G. Monitoring of cerebral haemodynamics in newborn infants. Early Hum Dev 2010; 86: 155–158.
6. Greisen G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand 1986; 75: 43–51.
7. Okumura A, Hayakawa F, Kato T, Itomi K, Maruyama K, Ishihara N, et al. Hypocarbia in preterm infants with periventricular leukomalacia: The relation between hypocarbia and mechanical ventilation. Pediatrics 2001; 107: 469–475.
8. Weindling AM, Kissack CM. Blood pressure and tissue oxygenation in the newborn baby at risk of brain damage. Biol Neonate 2001; 79: 241–245.
9. Binder-Heschl C, Urlesberger B, Koestenberger M, Schwaberger B, Schmölzer GM, Pichler G. Cerebral tissue oxygen saturation is associated with N-terminal probrain natriuretic peptide in preterm infants on their first day of life. Acta Paediatr 2015; 104: 32–37.
10. Verhagen EA, Hummel LA, Bos AF, Kooi EM. Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants. Clin Neurophysiol 2014; 125: 147–152.
11. Cerbo RM, Scudeller L, Maragliano R, Cabano R, Pozzi M, Tinelli C, et al. Cerebral oxygenation, superior vena cava flow, severe intraventricular hemorrhage and mortality in 60 very low birth weight infants. Neonatology 2015; 108: 246–252.
12. Balegar KK, Stark MJ, Briggs N, Andersen CC. Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants. J Pediatr 2014; 164: 475–480.
13. Gleason CA, Hamm C, Jones MD Jr. Effect of acute hypoxemia on brain blood flow and oxygen metabolism in immature fetal sheep. Am J Physiol 1990; 258: H1064–H1069.
14. Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab 2000; 20: 272–279.
15. Victor S, Appleton RE, Beirne M, Marson AG, Weindling AM. Effect of carbon dioxide on background cerebral electrical activity and fractional oxygen extraction in very low birth weight infants just after birth. Pediatr Res 2005; 58: 579–585.
16. Vutskits L. Cerebral blood flow in the neonate. Paediatr Anaesth 2014; 24: 22–29.
17. Verhagen EA, Van Braeckel KN, van der Veere CN, Groen H, Dijk PH, Hulzebos CV, et al. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev Med Child Neurol 2015; 57: 449–455.
18. Tyszczuk L, Meek J, Elwell C, Wyatt JS. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics 1998; 102: 337–341.
19. Dempsey EM, Barrington KJ, Marlow N, O’Donnell CP, Miletin J, Naulaers G, et al. Management of hypotension in preterm infants (The HIP Trial): A randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology 2014; 105: 275–281.
20. Alderliesten T, Lemmers PM, van Haastert IC, de Vries LS, Bonestroo HJ, Baerts W, et al. Hypotension in preterm neonates: Low blood pressure alone does not affect neurodevelopmental outcome. J Pediatr 2014; 164: 986–991.
21. Miletin J, Dempsey EM. Low superior vena cava flow on day 1 and adverse outcome in the very low birthweight infant. Arch Dis Child Fetal Neonatal Ed 2008; 93: F368–F371.
22. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 2016; 79: 55–64.
23. Korček P, Širc J, Straňák Z. Cerebral oxygenation reflects fetal development in preterm monochorionic and dichorionic twins. Early Hum Dev 2020; 144: 105025.
24. Greisen G, Andresen B, Plomgaard AM, Hyttel-Sørensen S. Cerebral oximetry in preterm infants: an agenda for research with a clear clinical goal. Neurophotonics 2016; 3: 031407.
25. Baik N, Urlesberger B, Schwaberger B, Schmölzer GM, Avian A, Pichler G. Cerebral haemorrhage in preterm neonates: Does cerebral regional oxygen saturation during the immediate transition matter? Arch Dis Child Fetal Neonatal Ed 2015; 100: 422–427.
26. Noori S, Seri I. Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med 2015; 20: 232–237.
27. da Costa CS, Czosnyka M, Smielewski P, Mitra S, Stevenson GN, Austin T. Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J Pediatr 2015; 167: 86–91.
28. Noori S, McCoy M, Anderson MP, Ramji F, Seri I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 2014; 164: 264–270.
29. Polglase GR, Miller SL, Barton SK, Baburamani AA, Wong FY, Aridas JD, et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS One 2012; 7: e39535.
30. Dix L, Molenschot M, Breur J, de Vries W, Vijlbrief D, Groenendaal F, et al. Cerebral oxygenation and echocardiographic parameters in preterm neonates with a patent ductus arteriosus: An observational study. Arch Dis Child Fetal Neonatal Ed 2016; 101: F520–F526.
31. van der Laan ME, Roofthooft MT, Fries MW, Berger RM, Schat TE, van Zoonen AG, et al. A hemodynamically significant patent ductus arteriosus does not affect cerebral or renal tissue oxygenation in preterm infants. Neonatology 2016; 110: 141–147.
32. Mahieu-Caputo D, Meulemans A, Martinovic J, Gubler MC, Delezoide AL, Muller F, et al. Paradoxic activation of the renin- angiotensin system in twin-twin transfusion syndrome: An explanation for cardiovascular disturbances in the recipient. Pediatr Res 2005; 58: 685–688.
33. Stirnemann JJ, Mougeot M, Proulx F, Nasr B, Essaoui M, Fouron JC, et al. Profiling fetal cardiac function in twin to twin transfusion syndrome. Ultrasound Obstet Gynecol 2010; 35: 19–27.
34. Mercanti I, Boivin A, Wo B, Vlieghe V, Le Ray C, Audibert F, et al. Blood pressures in newborns with twin-twin transfusion syndrome. J Perinatol 2011; 31: 417–424.
35. Bolch C, Fahey M, Reddihough D, Williams K, Reid S, Guzys A, et al. Twin-to-twin transfusion syndrome neurodevelopmental follow-up study (neurodevelopmental outcomes for children whose twin-to-twin transfusion syndrome was treated with placental laser photocoagulation). BMC Pediatr 2018; 18: 256.
36. Miller SL, Huppi PS, Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol 2016; 594: 807–823.
37. Hernandez‐Andrade E, Serralde JA, Cruz‐Martinez R. Can anomalies of fetal brain circulation be useful in the management of growth restricted fetuses? Prenat Diagn 2012; 32: 103–112.
38. Plomgaard AM, van Oeveren W, Petersen TH, Alderliesten T, Austin T, van Bel F, et al. The SafeBoosC II randomized trial: Treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr Res 2016; 79: 528–535.
39. Hansen ML, Pellicer A, Gluud C, et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: A protocol for the SafeBoosC randomised clinical phase III trial. Trials 2019; 20: 811.
Labels
Neonatology Neonatal NurseArticle was published in
Czech and Slovak Neonatology
2022 Issue 1
Most read in this issue
- Persistent pulmonary hypertension in the newborn: pathophysiology, diagnosis and treatment
- Neonatal myocardial hypertrophy
- Treatment of neonatal hemodynamic compromise
- Importance of placental transfusion on postnatal cardiopulmonary adaptation and neonatal outcome