Diff erent expression of genes involved in unfolded protein response in multiple myeloma and extramedullary dis ease patients
Authors:
A. Dostálová 1; M. Vlachová 1; T. Růžičková 1; P. Vaňhara 2,3; M. Štork 4; S. Ševčíková 1,5
Authors‘ workplace:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno
1; Ústav histologie a embryologie, LF MU Brno 4
2; Výzkumné centrum aplikované molekulární onkologie (RECAMO), MOÚ Brno Interní hematologická a onkologická klinika LF MU a FN Brno
3; Oddělení klinické hematologie, FN Brno
5
Published in:
Klin Onkol 2025; 38(1): 45-51
Category:
Original Articles
doi:
https://doi.org/10.48095/ccko202545
Overview
Background: The unfolded protein response (UPR) enables myeloma cells to overcome the stress conditions arising from excessive proteosynthesis and thus provides a survival advantage for myeloma cells. Extramedullary disease is a more aggressive form of multiple myeloma in which myeloma cells lose their dependence on the bone marrow microenvironment and are able to infiltrate other tissues and organs. The pathogenesis of extramedullary disease is not fully elucidated yet. The aim of this study was to determine whether there is a difference in the expression of UPR-related genes between bone marrow plasma cells from multiple myeloma and extramedullary disease patients. Materials and methods: Gene expression of six genes involved in UPR (ERN1, DDIT3, EIF2AK3, TUSC3, XBP1, HSPA5) was analyzed by quantitative reverse transcription polymerase chain reaction. In total, 76 bone marrow plasma cell samples were used, of which 44 were from patients with multiple myeloma and 32 from patients with extramedullary disease. Results: A statistically significant difference was observed between the multiple myeloma and extramedullary disease groups regarding the expression of HSPA5, DDIT3, EIF2AK3, and ERN1 genes. However, in the case of XBP1 and TUSC3 genes, no statistically significant difference in the expression was found. Several statistically significant correlations between the expression levels of the analyzed genes and the clinical data of the patients were observed as well. Conclusion: Our results suggest the importance of UPR in the pathogenesis of extramedullary disease. UPR appears to be a promising avenue for further research.
Keywords:
Multiple myeloma – Plasma cells – unfolded protein response – extramedullary disease
Sources
1. van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet 2021; 397 (10272): 410–427. doi: 10.1016/S01 40-6736 (21) 00135-5.
2. Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk-stratification and management. Am J Hematol 2022; 97 (8): 1086–1107. doi: 10.1002/ajh.26590.
3. Maisnar V, Minařík J, Štork M et al. Epidemiologie. Trans Hematol Dnes 2023; 29 (Suppl 2): 26.
4. Furukawa Y, Kikuchi J. Molecular pathogenesis of multiple myeloma. Int J Clin Oncol 2015; 20 (3): 413–422. doi: 10.1007/s10147-015-0837-0.
5. Chesi M, Bergsagel PL. Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol 2013; 97 (3): 313–323. doi: 10.1007/s12185-013-1291-2.
6. Sevcikova S, Minarik J, Stork M et al. Extramedullary disease in multiple myeloma – controversies and future directions. Blood Rev 2019; 36: 32–39. doi: 10.1016/j.blre. 2019.04.002.
7. Bansal R, Rakshit S, Kumar S. Extramedullary disease in multiple myeloma. Blood Cancer J 2021; 11 (9): 161. doi: 10.1038/s41408-021-00527-y.
8. Hathi D, Chanswangphuwana C, Cho N et al. Ablation of VLA4 in multiple myeloma cells redirects tumor spread and prolongs survival. Sci Rep 2022; 12 (1): 30. doi: 10.1038/s41598-021-03748-0.
9. Stessman HAF, Mansoor A, Zhan F et al. Reduced CXCR4 expression is associated with extramedullary disease in a mouse model of myeloma and predicts poor survival in multiple myeloma patients treated with bortezomib. Leukemia 2013; 27 (10): 2075–2077. doi: 10.1038/leu.2013.148.
10. Gregorova J, Vychytilova-Faltejskova P, Kramarova T et al. Proteomic analysis of the bone marrow microenvironment in extramedullary multiple myeloma patients. Neoplasma 2022; 69 (2): 412–424. doi: 10.4149/neo_2021_210527N715.
11. Besse L, Sedlarikova L, Kryukov F et al. Circulating serum microRNA-130a as a novel putative marker of extramedullary myeloma. PloS One 2015; 10 (9): e0137294. doi: 10.1371/journal.pone.0137294.
12. Vlachová M, Gregorová J, Vychytilová-Faltejsková P et al. Involvement of small non-coding RNA and cell antigens in pathogenesis of extramedullary multiple myeloma. Int J Mol Sci 2022; 23 (23): 14765. doi: 10.3390/ijms 232314765.
13. Besse L, Sedlarikova L, Greslikova H et al. Cytogenetics in multiple myeloma patients progressing into extramedullary disease. Eur J Haematol 2016; 97 (1): 93–100. doi: 10.1111/ejh.12688.
14. Jagosky MH, Usmani SZ. Extramedullary disease in multiple myeloma. Curr Hematol Malig Rep 2020; 15 (2): 62–71. doi: 10.1007/s11899-020-00568-3.
15. D’Agostino M, Cairns DA, Lahuerta JJ et al. Second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J Clin Oncol 2022; 40 (29): 3406–3418. doi: 10.1200/JCO.21.02614.
16. Stork M, Sevcikova S, Minarik J et al. Identification of patients at high risk of secondary extramedullary multiple myeloma development. Br J Haematol 2022; 196 (4): 954–962. doi: 10.1111/bjh.17925.
17. Bladé J, Beksac M, Caers J et al. Extramedullary disease in multiple myeloma: a systematic literature review. Blood Cancer J 2022; 12 (3): 45. doi: 10.1038/s41408-022-00 643-3.
18. Oakes SA. Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol 2020; 190 (5): 934–946. doi: 10.1016/j.ajpath.2020.01.010.
19. Dostálová A, Vlachová M, Gregorová J et al. The endoplasmic reticulum and its signaling pathways – a novel target for multiple myeloma treatment. Klin Onkol 2023; 37 (6): 440–446. doi: 10.48095/ccko2023440.
20. Lynes EM, Simmen T. Urban planning of the endoplasmic reticulum (ER): how diverse mechanisms segregate the many functions of the ER. Biochim Biophys Acta 2011; 1813 (10): 1893–1905. doi: 10.1016/j.bbamcr.2011.06.011.
21. Hetz C, Zhang K, Kaufman RJ. Mechanism, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 2020; 21 (8): 421–438. doi: 10.1038/s41580-020-0250-z.
22. Almanza A, Carlesso A, Chintha C et al. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J 2019; 286 (2): 241–278. doi: 10.1111/febs.14608.
23. Nikesitch N, Lee JM, Ling S et al. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Transl Immunol 2018; 7 (1): e1007. doi: 10.1002/cti2.1007.
24. Polo TCF, Miot HA. Use of ROC curves in clinical and experimental studies. J Vasc Bras 2020; 19: e20200186. doi: 10.1590/1677-5449.200186.
25. Greipp PR, San Miguel J, Durie BGM et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23 (15): 3412–3420. doi: 10.1200/JCO.2005.04.242.
26. Palumbo A, Avet-Loiseau H, Oliva S et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol 2015; 33 (26): 2863–2869. doi: 10.1200/JCO.2015. 61.2267.
27. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 1975; 36 (3): 842–854. doi: 10.1002/1097-0142 (197509) 36: 3< 842:: aid-cncr2820360303>3.0.co; 2-u.
28. Munshi NC, Hideshima T, Carrasco D et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 2004; 103 (5): 1799–1806. doi: 10.1182/blood-2003-02- 0402.
29. Vincenz L, Jäger R, O’Dwyer M et al. Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther 2013; 12 (6): 831–843. doi: 10.1158/1535-7163.MCT-12-0782.
30. Jauhiainen A, Thomsen C, Strömbom L et al. Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS One 2012; 7 (4): e33208. doi: 10.1371/journal.pone.0033208.
31. Urra H, Dufey E, Lisbona F et al. When ER stress reaches a dead end. Biochim Biophys Acta 2013; 1833 (12): 3507–3517. doi: 10.1016/j.bbamcr.2013.07.024.
32. Yu X, Zhai C, Fan Y et al. TUSC3: a novel tumour suppressor gene and its functional implications. J Cell Mol Med 2017; 21 (9): 1711–1718. doi: 10.1111/jcmm.13128.
33. Vašíčková K, Horak P, Vaňhara P. TUSC3: functional duality of a cancer gene. Cell Mol Life Sci 2018; 75 (5): 849–857. doi: 10.1007/s00018-017-2660-4.
34. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: a cell’s response to stress. Life Sci 2019; 226: 156–163. doi: 10.1016/j.lfs.2019.04.022.
35. Ninkovic S, Harrison SJ, Quach H. Glucose-regulated protein 78 (GRP78) as a potential novel biomarker and therapeutic target in multiple myeloma. Expert Rev Hematol 2020; 13 (11): 1201–1210. doi: 10.1080/17474086.2020.1830372.
36. Rasche L, Menoret E, Dubljevic V et al. A GRP78-directed monoclonal antibody recaptures response in refractory multiple myeloma with extramedullary involvement. Clin Cancer Res 2016; 22 (17): 4341–4349. doi: 10.1158/1078-0432.CCR-15-3111.
37. Saptarshi N, Porter LF, Paraoan L. PERK/EIF2AK3 integrates endoplasmic reticulum stress-induced apoptosis, oxidative stress and autophagy responses in immortalised retinal pigment epithelial cells. Sci Rep 2022; 12 (1): 13324. doi: 10.1038/s41598-022-16909-6.
38. Bagratuni T, Patseas D, Mavrianou-Koutsoukou N et al. Characterization of a PERK kinase inhibitor with anti-myeloma activity. Cancers 2020; 12 (10): 2864. doi: 10.3390/cancers12102864.
39. Harnoss JM, Le Thomas A, Shemorry A et al. Disruption of IRE1a through its kinase domain attenuates multiple myeloma. Proc Natl Acad Sci U S A 2019; 116 (33): 16420–16429. doi: 10.1073/pnas.1906999116.
40. Bhutani M, Foureau DM, Atrash S et al. Extramedullary multiple myeloma. Leukemia 2020; 34 (1): 1–20. doi: 10.1038/s41375-019-0660-0.
41. Al Saleh AS, Parmar HV, Visram A et al. Increased bone marrow plasma-cell percentage predicts outcomes in newly diagnosed multiple myeloma patients. Clin Lymphoma Myeloma Leuk 2020; 20 (9): 596–601. doi: 10.1016/j.clml.2020.03.012.
42. Korbet SM, Schwartz MM. Multiple myeloma. J Am Soc Nephrol 2006; 17 (9): 2533–2545. doi: 10.1681/ASN.2006020139.
43. Yang J, Liu Z, Liu H et al. C-reactive protein promotes bone destruction in human myeloma through the CD32-p38 MAPK-Twist axis. Sci Signal 2017; 10 (509): eaan6282. doi: 10.1126/scisignal.aan6282.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology

2025 Issue 1
Most read in this issue
- Colorectal carcinoma – epidemiology, risk factors, prognostic bio markers
- New treatment options for generalized HER2-positive breast cancer in higher-line systemic palliative therapy
- A supportive programme for cancer patients based on knowledge of the neurobio logy of cancer
- Quality of life assessment in radiotherapy