Nový prístup ku skríningu zhubných nádorov pomocou detekčných testov použitím nematódy Caenorhabditis elegans
Authors:
A. Kaiglová; S. Kucharíková
Authors‘ workplace:
Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava, Slovakia
Published in:
Klin Onkol 2024; 38(3): 184-188
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2024184
Overview
Východiská: Včasná diagnostika zhubných nádorov je nevyhnutná pre ich účinnú liečbu. V súčasnosti sú zavedené skríningové testy špecifické pre jednotlivé typy zhubných nádorov, čo si vyžaduje testovanie pre každý typ zhubného nádoru zvlášť. Hlavným cieľom výskumu zhubných nádorov je vyvinúť metódy, ktoré dokážu odhaliť viacero typov malígnych nádorov z jednej vzorky telesnej tekutiny. Testy na včasnú detekciu viacerých typov zhubných nádorov sú zamerané na odhalenie fragmentov cirkulujúcej nádorovej DNA, voľnej DNA, cirkulujúcej mikroRNA alebo proteínov uvoľnených nádorovými bunkami v telesných tekutinách pacienta. Avšak kvôli vysokým nákladom nie sú tieto testy na prevenciu zhubných nádorov v bežnej zdravotnej starostlivosti vhodné. Preto sa v posledných rokoch venuje pozornosť skríningovým testom na zhubné nádory, ktoré detegujú prchavé organické zlúčeniny v moči onkologických pacientov. Na takéto testy sa často využívajú živé organizmy, napr. hlístovce Caenorhabditis elegans. C. elegans, ktorý meria iba 1 mm, má potenciál ponúknuť novú, účinnú, nákladovo efektívnu, rýchlu a bezbolestnú metódu na zisťovanie prítomnosti malígnych nádorov. Cieľ: Cieľom tohto článku je predložiť prehľad literatúry o vývoji a overovaní metód detekcie malígnych nádorov pomocou nematód C. elegans. Potenciálne benefity týchto testov sú významné, pretože by sa mohli stať cenným nástrojom pre skorú identifikáciu a diagnostiku zhubných nádorov, aj keď tento výskum je stále v počiatočných štádiách vývoja.
Klíčová slova:
Caenorhabditis elegans – zhubné nádory – metódy detekcie – diagnostika zhubných nádorov
Sources
1. Bray F, Laversanne M, Weiderpass E et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021; 127 (16): 3029–3030. doi: 10.1002/cncr.33587.
2. Fidler MM, Bray F, Soerjomataram I. The global cancer burden and human development: a review. Scand J Public Health 2018; 46 (1): 27–36. doi: 10.1177/1403 494817715400.
3. Tobore TO. On the need for the development of a cancer early detection, diagnostic, prognosis, and treatment response system. Futur Sci OA 2020; 6 (2): FSO439. doi: 10.2144/fsoa-2019-0028.
4. Nagpal M, Singh S, Singh P et al. Tumor markers: a diagnostic tool. Natl J Maxillofac Surg 2016; 7 (1): 17–20. doi: 10.4103/0975-5950.196135.
5. Fehlmann T, Kahraman M, Ludwig N et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol 2020; 6 (5): 714–723. doi: 10.1001/jamaoncol.2020.0001.
6. Hinestrosa JP, Kurzrock R, Lewis JM et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun Med (Lond) 2022; 2: 29. doi: 10.1038/s43856-022-00088-6.
7. Jamshidi A, Liu MC, Klein EA et al. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 2022; 40 (12): 1537–1549. doi: 10.1016/j.ccell.2022.10.022.
8. Mencel J, Slater S, Cartwright E et al. The role of ctDNA in gastric cancer. Cancers (Basel) 2022; 14 (20): 5105. doi: 10.3390/cancers14205105.
9. Xin L, Yue Y, Zihan R et al. Clinical application of liquid biopsy based on circulating tumor DNA in non-small cell lung cancer. Front Physiol 2023; 14: 1200124. doi: 10.3389/fphys.2023.1200124.
10. Nicholson BD, Oke J, Virdee PS et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): a large-scale, observational cohort study. Lancet Oncol 2023; 24 (7): 733–743. doi: 10.1016/S1470-2045 (23) 00277-2.
11. Horstmann M, Steinbach D, Fischer C et al. Pd25-03 an electronic nose system detects bladder cancer in urine specimen: first results of a pilot study. J Urol 2015; 193 (4): e560–e561. doi: 10.1016/j.juro.2015.02.1652.
12. da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: a review. Clin Mass Spectrom 2020; 18: 27–37. doi: 10.1016/j.clinms.2020.10.004.
13. Lett L, George M, Slater R et al. Investigation of urinary volatile organic compounds as novel diagnostic and surveillance biomarkers of bladder cancer. Br J Cancer 2022; 127 (2): 329–336. doi: 10.1038/s41416-022-01785-8.
14. Woollam M, Siegel AP, Munshi A et al. Canine-inspired chemometric analysis of volatile organic compounds in urine headspace to distinguish prostate cancer in mice and men. Cancers (Basel) 2023; 15 (4): 1352. doi: 10.3390/cancers15041352.
15. Marimuthu A, O’Meally RN, Chaerkady R et al. A comprehensive map of the human urinary proteome. J Proteome Res 2011; 10 (6): 2734–2743. doi: 10.1021/pr2003038.
16. Bax C, Lotesoriere BJ, Sironi S et al. Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways. Cancers (Basel) 2019; 11 (9): 1244. doi: 10.3390/cancers11091244.
17. Taverna G, Tidu L, Grizzi F et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J Urol 2015; 193 (4): 1382–1387. doi: 10.1016/j.juro.2014.09.099.
18. Guerrero-Flores H, Apresa-García T, Garay-Villar Ó et al. A non-invasive tool for detecting cervical cancer odor by trained scent dogs. BMC Cancer 2017; 17 (1): 79. doi: 10.1186/s12885-016-2996-4.
19. Seo IS, Lee HG, Koo B et al. Cross detection for odor of metabolic waste between breast and colorectal cancer using canine olfaction. PLoS One 2018; 13 (2): e0192629. doi: 10.1371/journal.pone.0192629.
20. Montes ÁG, López-Rodó LM, Rodríguez IR et al. Lung cancer diagnosis by trained dogs. Eur J Cardiothorac Surg 2017; 52 (6): 1206–1210. doi: 10.1093/ejcts/ezx152.
21. Kochevalina MY, Bukharina AB, Trunov VG et al. Changes in the urine volatile metabolome throughout growth of transplanted hepatocarcinoma. Sci Rep 2022; 12 (1): 7774. doi: 10.1038/s41598-022-11818-0.
22. Meneely PM, Dahlberg CL, Rose JK. Working with worms: Caenorhabditis elegans as a model organism. Curr Protoc Essent Lab Tech 2019; 19 (1).
23. Altun ZF, Hall DH. Nervous system general description. [online]. Available from: https: //wormatlas.org/hermaphrodite/nervous/mainframe.htm.
24. Solis GM, Petrascheck M. Measuring Caenorhabditis elegans life span in 96 well microtiter plates. J Vis Exp 2011; (49): 2496. doi: 10.3791/2496.
25. Frézal L, Félix MA. C. elegans outside the Petri dish. Elife 2015; 4: e05849. doi: 10.7554/eLife.05849.
26. Bargmann CI. Chemosensation in C. elegans. WormBook 2006; 1–29. doi: 10.1895/wormbook.1.123.1.
27. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324 (5930): 1029–1033. doi: 10.1126/science.1160809.
28. Lanza E, Rocco M Di, Schwartz S et al. C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples. Sci Rep 2021; 11 (1): 17133. doi: 10.1038/s41598-021-96613-z.
29. Daulton E, Wicaksono AN, Tiele A et al. Volatile organic compounds (VOCs) for the non-invasive detection of pancreatic cancer from urine. Talanta 2021; 221: 121604. doi: 10.1016/j.talanta.2020.121604.
30. Melkman T, Sengupta P. The worm’s sense of smell: development of functional diversity in the chemosensory system of Caenorhabditis elegans. Dev Biol 2004; 265 (2): 302–319. doi: 10.1016/j.ydbio.2003.07.005.
31. Zhang C, Yan J, Chen Y et al. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol Adv 2014; 32 (2): 290–295. doi: 10.1016/j.biotechadv.2013.10.010.
32. Zhang C, Zhao N, Chen Y et al. The signaling pathway of Caenorhabditis elegans mediates chemotaxis response to the attractant 2-heptanone in a Trojan Horse-like pathogenesis. J Biol Chem 2016; 291 (45): 23618–23627. doi: 10.1074/jbc.M116.741132.
33. Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1993; 74 (3): 515–527. doi: 10.1016/0092-8674 (93) 80053-h.
34. Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 1973; 70 (3): 817–821. doi: 10.1073/pnas.70.3.817.
35. Yoshida K, Hirotsu T, Tagawa T et al. Odour concentration-dependent olfactory preference change in C. elegans. Nat Commun 2012; 3: 739. doi: 10.1038/ncomms1750.
36. Margie O, Palmer C, Chin-Sang I. C. elegans chemotaxis assay. J Vis Exp 2013; (74): e50069. doi: 10.3791/50069.
37. Hirotsu T, Sonoda H, Uozumi T et al. A highly accurate inclusive cancer screening test using Caenorhabditis elegans scent detection. PLoS One 2015; 10 (3): e0118699. doi: 10.1371/journal.pone.0118699.
38. Worthy SE, Haynes L, Chambers M et al. Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PLoS One 2018; 13 (7): e0201158. doi: 10.1371/journal.pone.0201158.
39. Wakabayashi T, Nojiri Y, Takahashi-Watanabe M. Multiple chemosensory neurons mediate avoidance behavior to rare earth ions in Caenorhabditis elegans. Biol Trace Elem Res 2021; 199 (7): 2764–2769. doi: 10.1007/s12011-020-02375-6.
40. Ruszkiewicz JA, Pinkas A, Miah MR et al. C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 2018; 354: 126–135. doi: 10.1016/j.taap.2018.03.016.
41. Bargmann CI, Horvitz HR. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 1991; 7 (5): 729–742. doi: 10.1016/0896-6273 (91) 90276-6.
42. Battal D, Alkas FB, Kocadal K et al. Evaluation of the chemotactic and genotoxic effects of selected cycloartane-type glycosides on Caenorhabditis elegans. Rec Nat Prod 2023; 17 (4): 648–663.
43. Kusumoto H, Tashiro K, Shimaoka S et al. Efficiency of gastrointestinal cancer detection by nematode-NOSE (N-NOSE). In Vivo 2020; 34 (1): 73–80. doi: 10.21873/invivo.11747.
44. Inaba S, Shimozono N, Yabuki H et al. Accuracy evaluation of the C. elegans cancer test (N-NOSE) using a new combined method. Cancer Treat Res Commun 2021; 27: 100370. doi: 10.1016/j.ctarc.2021.100370.
45. Asai A, Konno M, Ozaki M et al. Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer. Oncotarget 2021; 12 (17): 1687–1696. doi: 10.18632/oncotarget.28035.
46. Thompson M, Feria NS, Yoshioka A et al. A Caenorhabditis elegans behavioral assay distinguishes early stage prostate cancer patient urine from controls. Biol Open 2021; 10 (3): bio057398. doi: 10.1242/bio.057398.
47. Namgong C, Kim JH, Lee MH et al. Non-invasive cancer detection in canine urine through Caenorhabditis elegans chemotaxis. Front Vet Sci 2022; 9: 932474. doi: 10.3389/fvets.2022.932474.
48. Kaiglová A, Špajdelová J, Kalistová J et al. Využitie Caenorhabitis elegans pri skríningu onkologických ochorení. Neswlab 2020; 11 (2): 83–84.
49. Neto MF, Nguyen QH, Marsili J et al. The nematode Caenorhabditis elegans displays a chemotaxis behavior to tuberculosis-specific odorants. J Clin Tuberc Other Mycobact Dis 2016; 4: 44–49. doi: 10.1016/j.jctube.2016.06. 001.
50. Dalton P, Gelperin A, Preti G. Volatile metabolic monitoring of glycemic status in diabetes using electronic olfaction. Diabetes Technol Ther 2004; 6 (4): 534–544. doi: 10.1089/1520915041705992.
Labels
Paediatric clinical oncology Surgery Clinical oncologyArticle was published in
Clinical Oncology
2024 Issue 3
Most read in this issue
- Monoklonální gamapatie klinického významu s osteosklerotickými ložisky – popis případu a přehled literatury
- Nový prístup ku skríningu zhubných nádorov pomocou detekčných testov použitím nematódy Caenorhabditis elegans
- Překážky a podpůrné faktory při zapojení onkologických pacientů do programů pohybové aktivity – literární přehled
- Výsledky studie faktorů predikujících riziko vzniku poradiační mukozitidy stupně III během radioterapie nebo chemoradioterapie u pacientů s karcinomem ústní dutiny a orofaryngu