Promising treatment modalities in the therapy of myelodysplastic syndromes
Authors:
A. Jonášová
Authors‘ workplace:
I. interní klinika – klinika hematologie 1. LF UK a VFN v Praze
Published in:
Klin Onkol 2021; 34(5): 356-365
Category:
Reviews
doi:
https://doi.org/10.48095/ccko2021356
Overview
Background: Myelodysplastic syndromes (MDS) are a highly heterogenous group of diseases, which is refl ected in the need for a wide range of therapeutic approaches. At this time, the only curative option is allogeneic hematopoietic stem cell transplantation. However, given the median age of MDS patients (around 70) and all the associated risks of transplantation, this remains a viable option for only a small percentage of patients. As such, the main therapeutic approaches are supportive therapy, growth factors, immunosuppression and, as of this century, the fi rst innovative approaches of immunomodulatory and hypomethylation therapy. Yet, patient responses to most of these therapies (with the exception of immunomodulatory therapy for “5q- syndrome“) do not exceed 40%. It is therefore imperative to continuously be looking for new promising approaches for MDS therapy. Only in recent years, with advancements in the knowledge of pathogenesis and molecular genetics, new interesting drugs have begun to emerge. Purpose: This summarizing article provides an overview of new therapeutic options, even those in the early stages of clinical trials.
Keywords:
myelodysplastic syndrome – treatment – new approaches
Sources
1. Rollison DE, Howlader N, Smith MT et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 2008; 112(1): 45–52. doi: 10.1182/ blood-2008-01-134858.
2. Greenberg P, Cox C, LeBeau MM et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89(6): 2079–2088.
3. Greenberg PL, Tuechler H, Schanz J et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012; 120(12): 2454–2465. doi: 10.1182/ blood-2012-03-420489.
4. Bejar R, Stevenson KE, Caughey BA et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 2012; 30(27): 3376–3382. doi: 10.1200/ JCO.2011.40.7379.
5. Monserrat AS, Pomares H, Alonso E et al. Impact of red blood cell transfusion burden status in patients with lower-risk MDS. Blood 2019; 134(Supplement 1): 3031.
6. Neukirchen J, Fox F, Kündgen A et al. Improved survival in MDS patients receiving iron chelation therapy – a matched pair analysis of 188 patients from the Düsseldorf MDS registry. Leuk Res 2012; 36(8): 1067–1070. doi: 10.1016/ j.leukres.2012.04.006.
7. Cermak J, Jonasova A, Vondrakova et. al. A comparative study of deferasirox and deferiprone in the treatment of iron overload in patients with myelodysplastic syndromes Leuk Res 2013; 37(12): 1612–1615. doi: 10.1016/ j. leukres.2013.07.021.
8. Fenaux P, Santini V, Platzbecker U et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia 2018; 32(12): 2648–2658. doi: 10.1038/ s41375-018-0118-9.
9. Platzbecker U, Symeonidis A, Oliva EN et al. A phase 3 randomized placebo-controlled double-blind trial of darbepoetin alfa in the treatment of anemia in patients with low and intermediate-1 risk myelodysplastic syndromes. Leukemia 2017; 31(9): 1944–1950. doi: 10.1038/ leu.2017.192.
10. Castelli R, Deliliers GL, Colombo R et al. Biosimilar epoetin in elderly patients with myelodysplastic syndromes improves anemia, quality of life and brain function. Ann Hematol 2014; 93(9): 1523–1529. doi: 10.1007/ s00277- 014-2070-8.
11. List A, Kurtin S, Roe DJ et al. Effi cacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005; 352(6): 549–557. doi: 10.1056/ NEJMoa041668.
12. Fenaux P, Giagounidis A, Mufti GJ et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/ intermediate- 1-risk myelodysplastic syndromes with del5q. Blood 2011; 118(14): 3765–3776. doi: 10.1182/ blood-2011-01-330126.
13. Cheson BD, Greenberg PL, Bennett JM et al. Clinical application and proposal for modifi cation of the International working group (IWG) response criteria in myelodysplasia. Blood 2006; 108(2): 419–425. doi: 10.1182/ blood- 2005-10-4149.
14. Jonasova A, Neuwirtova R, Zemanova Z et al. Lenalidomide treatment in lower risk myelodysplastic syndromes- The experience of a Czech hematology center. (Positive eff ect of erythropoietin ± prednisone addition to lenalidomide in refractory or relapsed patients). Leuk Res 2018; 69: 12–17. doi: 10.1016/ j.leukres.2018.03.015.
15. Hellström-Lindberg E, Giagounidis A, Fenaux P et al. Update on the safety and long-term outcomes in lenalidomide- treated patients with red blood cell transfusiondependent low-/ int-1-risk myelodysplastic syndromes and del(5q). Haematologica 2012; 97 (Suppl 1): 358–359.
16. Santini V, Almeida A, Giagounidis A et al. Randomi zed phase III study of lenalidomide versus placebo in RBC transfusion-dependent patients with lower- -risk non-del(5q) myelodysplastic syndromes and ineligible for or refractory to erythropoiesis-stimulating agents. J Clin Oncol 2016; 34(25): 2988–2996. doi: 10.1200/ JCO.2015.66.0118.
17. List AF, Sun Z, Verma A et al. Combined treatment with lenalidomide and epoetin alfa leads to durable responses in patients with epo-refractory, lower risk non-deletion 5q [Del(5q)] MDS: fi nal results of the E2905 intergroup phase III study – an ECOG-ACRIN cancer research group study. Blood 2019; 134(Supplement 1): 841.
18. Fenaux P, Platzbecker U, Mufti GJ et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med 2020; 382(2): 140–151. doi: 10.1056/ NEJMoa1908892.
19. Platzbecker U, Germing U, Götze KS et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-fi nding study with long-term extension study. Lancet Oncol 2017; 18(10): 1338–1347. doi: 10.1016/ S1470-2045(17)30615-0.
20. Garcia-Manero G, Mufti GJ, Fenaux P et al. Hematologic improvement – neutrophil and –platelet in the MEDALIST trial: multilineage data from a phase 3, randomized, double-blind, placebo-controlled study of luspatercept to treat anemia in patients with very low-, low-, or intermediate-risk myelodysplastic syndromes (MDS) with ring sideroblasts (RS) who require red blood cell (RBC) transfusions. Blood 2019; 134 (Supplement 1): 4243.
21. Platzbecker U, Steensma DP, Van Eygen K et al. Imerge: a study to evaluate imetelstat (GRN163L) in transfusiondependent subjects with IPSS low or intermediate-1 risk myelodysplastic syndromes (MDS) that is relapsed/ refractory to erythropoiesis-stimulating agent (ESA) treatment. Blood 2019; 134(Supplement 1): 4248.
22. Chen N, Hao C, Peng X et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med 2019; 381(11): 1001–1010. doi: 10.1056/ NEJMoa1813599.
23. Henry, DH, Glaspy J, Harrup RA et al. Roxadustat (FG4592; ASP1517; AZD9941) in the treatment of anemia in patients with lower risk myelodysplastic syndrome (LR-MDS) and low red blood cell (RBC) transfusion burden (LTB). Blood 2019; 134 (Supplement 1): 843.
24. Fenaux P, Muus P, Kantarjian H et al. Romiplostim monotherapy in thrombocytopenic patients with myelodysplastic syndromes: long-term safety and effi cacy. Br J Haematol 2017; 178(6): 906–913. doi: 10.1111/ bjh.14792.
25. Platzbecker U, Kubasch AS, Giagounidis A et al. Biomarkers of response to romiplostim in patients with lower-risk myelodysplastic syndrome (MDS) and thrombocytopenia – results of the Europe trial by the Emsco network. Blood 2019; 134 (Supplement 1): 2998.
26. Oliva EN, Alati C, Santini V et al. Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial. Lancet Haematol 2017; 4(3): e127–e136. doi: 10.1016/ S2352-3026(17)30012-1.
27. Silverman LR, Demakos EP, Peterson BL et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20(10): 2429–2440. doi: 10.1200/ JCO.2002.04.117.
28. Scott BL, Pasquini MC, Logan BR et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol 2017; 35(11): 1154–1161. doi: 10.1200/ JCO.2016.70.7091.
29. Damaj G, Duhamel A, Robin M et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greff e de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies, J Clin Oncol 2012; 30(36): 4533–4540. doi: 10.1200/ JCO.2012.44.3499.
30. Jonášova A, Čermák J, Červínek L et al. První zkušenosti České MDS skupiny s terapií 5-azacytidinem u nemocných s myelodysplastickým syndromem s vyšším rizikem (IPSS střední 2 a vysoké riziko), akutní myeloidní leukemií do 30 % myeloblastů a chronickou myelomonocytární leukemií II. Tranfuze Hematol dnes 2013; 19(3): 125–133.
31. Garcia JS, Wei A, Borate U et al. Safety, effi cacy, and patient-reported outcomes of venetoclax in combination with azacitidine for the treatment of patients with higherrisk myelodysplastic syndrome: a phase 1b study. Blood 2020; 136 (Supplement 1): 55–57.
32. Carpentier GR, DeZern AE, DiNardo CD et al. Preliminary results from the phase II study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS). Blood 2019; 134 (Supplement 1): 678.
33. Sallman DA, DeZern AE, Garcia-Manero G et al. Phase 2 results of APR-246 and azacitidine (AZA) in patients with TP53 mutant myelodysplastic syndromes (MDS) and ol- igoblastic acute myeloid leukemia (AML). Blood 2019; 134(Supplement 1): 676.
34. Sallman DA, Asch AS, Monzr M et al. The fi rst-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is eff ective in MDS and AML patients: ongoing phase 1b results. Blood 2019; 134 (Supplement 1): 569.
35. Navada SC, Fruchtman SM, Odchimar-Reissig R et al. A phase 1/ 2 study of rigosertib in patients with myelodysplastic syndromes (MDS) and MDS progressed to acute myeloid leukemia. Leuk Res 2018; 64: 10–16. doi: 10.1016/ j.leukres.2017.11.006.
36. Swords ET, Cotre S, Maris MB et al. Pevonedistat, a fi rst-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 2018; 131(13): 1415–1424. doi: 10.1182/ blood-2017-09-805 895.
37. Ades L, Watts JM, Radinoff A et al. Phase II study of pevonedistat (P) + azacitidine (A) versus A in patients (pts) with higher-risk myelodysplastic syndromes (MDS)/ chronic myelomonocytic leukemia (CMML), or low-blast acute myelogenous leukemia (LB AML) (NCT02610777). J Clin Oncol 2020; 38(5). doi: 10.1200/ JCO .2020.38.15 suppl.7506.
38. Zeidan AM, Miyazaki Y, Platzbecker U et al. A randomized, double-blind, placebo-controlled, phase II study of MBG453 added to hypomethylating agents (HMAs) in patients (pts) with intermediate, high, or very high risk myelodysplastic syndrome (MDS): stimulus-MDS1. Blood 2019; 134 (Supplement 1): 4259.
39. Curik N, Burda P, Stopka T et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell diff erentiation capacity. Leukemia 2012; 26(8): 1804–1811. doi: 10.1038/ leu.2012.47.
40. Stopka T, Jonasova A, Minařík et al. Randomizovaná otevřená akademická studie: srovnání standardního podání azacytidinu oproti azacytidinu s preinkubací G-CSF u myelodysplastického syndromu vyššího rizika – interim analýza. Myelodysplastic Syndrome News 2019; 7(2): 12–15.
41. Radakovich N, Sekeres MA, Nazha A et al. Predicting response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) using artifi cial intelligence (AI). Blood 2019; 134 (Supplement1): 2089.
Labels
Paediatric clinical oncology Surgery Clinical oncology Haematology General practitioner for adultsArticle was published in
Clinical Oncology
2021 Issue 5
Most read in this issue
- Personalities and their contribution to the development of radiation oncology
- Skupina léků anti-HER2 pro pacientky s karcinomu prsu se rozrostla o preparát Phesgo
- Promising treatment modalities in the therapy of myelodysplastic syndromes
- The place and importance of hyaluronic acid in radiotherapy side effects